如何使用python中的平移矩阵将小图像的特定坐标放置到大图像的特定坐标
Posted
技术标签:
【中文标题】如何使用python中的平移矩阵将小图像的特定坐标放置到大图像的特定坐标【英文标题】:how to put a specific coordinate of a small image to a specific coordinate of a large image using translation matrix in python 【发布时间】:2021-08-21 18:56:36 【问题描述】:我正在学习 OpenCV,我正在寻找 Python 中的代码,它获取小图像的输入坐标并将其映射到大图像的坐标,以便将小图像插入到大图像中,并且它可以像旋转一样变换。我想使用翻译矩阵作为输入来做到这一点。例如,如果矩阵是:
([75, 120][210,320],
[30, 90][190,305],
[56, 102][250,474],
[110, 98][330,520])
这意味着小图像中 (75, 120) 处的像素应映射到大图像中 (210, 320) 处的像素,小图像中 (30, 90) 处的像素应映射到 (190, 305) 处的像素在大图... 我搜索了很多,但我没有得到我的问题的正确答案。 我该如何解决这个问题?
【问题讨论】:
【参考方案1】:我不知道将像素映射到任何位置的像素的矩阵运算,并且由于图像通常由二维数组表示,因此没有一种通用方法可以使这些像素指向相同的数据。
但鉴于这些图像由 NumPy 数组表示,您可以使用高级索引将任何像素从一个数组复制到另一个:
# smallimage is a NumPy array
# bigimage is a NumPy array
### Indices ###
# I formatted it so the matching indices
# between the 2 images line up in a column
bigD1 = [210, 190, 250, 330] # dimension 0
bigD2 = [320, 305, 474, 520] # dimension 1
smallD1 = [75, 30, 56, 110]
smallD2 = [120, 90, 102, 98]
### copy pixels from small image to big image ###
# on right side of =, advanced indexing copies
# the selected pixels to a new temporary array
# v
bigimage[bigD1, bigD2] = smallimage[smallD1, smallD2]
# ^
# on left side of =, advanced indexing specifies
# where we copy the temporary array's pixels to.
# smallimage is unchanged
# bigimage has edited pixels
【讨论】:
谢谢,但是这段代码的输出是什么?我的意思是如何获得将小图像插入大图像的输出图像? 我在帖子中添加了一些cmets,希望能解释一下。【参考方案2】:在大图中插入小图:
import sys
import cv2
dir = sys.path[0]
small = cv2.imread(dir+'/small.png')
big = cv2.imread(dir+'/big.png')
x, y = 20, 20
h, w = small.shape[:2]
big[y:y+h, x:x+w] = small
cv2.imwrite(dir+'/out.png', big)
调整大小然后插入:
h, w = small.shape[:2]
small=cv2.resize(small,(w//2,h//2))
x, y = 20, 20
h, w = small.shape[:2]
big[y:y+h, x:x+w] = small
插入图片的一部分:
x, y = 20, 20
h, w = small.shape[:2]
hh, ww = h//2, w//2
big[y:y+hh, x:x+ww] = small[0:hh, 0:ww]
旋转样本:
bH, bW = big.shape[:2]
sH, sW = small.shape[:2]
ch, cw = sH//2, sW//2
x, y = sW-cw//2, ch
empty = 0 * np.ones((bH, bW, 3), dtype=np.uint8)
empty[y:y+sH, x:x+sW] = small
M = cv2.getRotationMatrix2D(center=(x+cw, y+ch), angle=45, scale=1)
rotated = cv2.warpAffine(empty, M, (bW, bH))
big[np.where(rotated != 0)] = rotated[np.where(rotated != 0)]
透视变换示例:
bH, bW = big.shape[:2]
sH, sW = small.shape[:2]
x, y = 0, 0
empty = 0 * np.ones((bH, bW, 3), dtype=np.uint8)
empty[y:y+sH, x:x+sW] = small
_inp = np.float32([[0, 0], [sW, 0], [bW, sH], [0, sH]])
_out = np.float32([[bW//2-sW//2, 0], [bW//2+sW//2, 0], [bW, bH], [0, bH]])
M = cv2.getPerspectiveTransform(_inp, _out)
transformed = cv2.warpPerspective(empty, M, (bH, bW))
big[np.where(transformed != 0)] = transformed[np.where(transformed != 0)]
最后是映射坐标;我想你只需要填写_out:
bH, bW = big.shape[:2]
sH, sW = small.shape[:2]
empty = 0 * np.ones((bH, bW, 3), dtype=np.uint8)
empty[:sH, :sW] = small
# Cordinates: TopLeft, TopRight, BottomRight, BottomLeft
_inp = np.float32([[0, 0], [sW, 0], [sW, sH], [0, sH]])
_out = np.float32([[50, 40], [300, 40], [200, 200], [10, 240]])
M = cv2.getPerspectiveTransform(_inp, _out)
transformed = cv2.warpPerspective(empty, M, (bH, bW))
big[np.where(transformed != 0)] = transformed[np.where(transformed != 0)]
【讨论】:
以上是关于如何使用python中的平移矩阵将小图像的特定坐标放置到大图像的特定坐标的主要内容,如果未能解决你的问题,请参考以下文章