如何使用 data.table 有效地计算坐标对之间的距离:=
Posted
技术标签:
【中文标题】如何使用 data.table 有效地计算坐标对之间的距离:=【英文标题】:How to efficiently calculate distance between pair of coordinates using data.table := 【发布时间】:2016-08-17 11:27:45 【问题描述】:我想找到最有效(最快)的方法来计算经纬度坐标对之间的距离。
使用sapply
和spDistsN1sp
提出了一个不太有效的解决方案(here)。我相信如果有人在data.table
中使用spDistsN1sp
和:=
运算符,这可以做得更快,但我无法做到这一点。有什么建议吗?
这是一个可重现的示例:
# load libraries
library(data.table)
library(dplyr)
library(sp)
library(rgeos)
library(UScensus2000tract)
# load data and create an Origin-Destination matrix
data("oregon.tract")
# get centroids as a data.frame
centroids <- as.data.frame(gCentroid(oregon.tract,byid=TRUE))
# Convert row names into first column
setDT(centroids, keep.rownames = TRUE)[]
# create Origin-destination matrix
orig <- centroids[1:754, ]
dest <- centroids[2:755, ]
odmatrix <- bind_cols(orig,dest)
colnames(odmatrix) <- c("origi_id", "long_orig", "lat_orig", "dest_id", "long_dest", "lat_dest")
我使用data.table
的尝试失败了
odmatrix[ , dist_km := spDistsN1(as.matrix(long_orig, lat_orig), as.matrix(long_dest, lat_dest), longlat=T)]
这是一个可行的解决方案(但可能效率较低)
odmatrix$dist_km <- sapply(1:nrow(odmatrix),function(i)
spDistsN1(as.matrix(odmatrix[i,2:3]),as.matrix(odmatrix[i,5:6]),longlat=T))
head(odmatrix)
> origi_id long_orig lat_orig dest_id long_dest lat_dest dist_km
> (chr) (dbl) (dbl) (chr) (dbl) (dbl) (dbl)
> 1 oregon_0 -123.51 45.982 oregon_1 -123.67 46.113 19.0909
> 2 oregon_1 -123.67 46.113 oregon_2 -123.95 46.179 22.1689
> 3 oregon_2 -123.95 46.179 oregon_3 -123.79 46.187 11.9014
> 4 oregon_3 -123.79 46.187 oregon_4 -123.83 46.181 3.2123
> 5 oregon_4 -123.83 46.181 oregon_5 -123.85 46.182 1.4054
> 6 oregon_5 -123.85 46.182 oregon_6 -123.18 46.066 53.0709
【问题讨论】:
查看spDistsN1
的代码。你应该重写你自己的不需要转换为矩阵的函数,因为我敢打赌这是大部分时间的地方。
也可以查看这篇文章:***.com/questions/36686312/…
【参考方案1】:
我编写了自己的 geosphere::distHaversine
版本,以便它更自然地适合 data.table
:=
调用,它可能在这里有用
dt.haversine <- function(lat_from, lon_from, lat_to, lon_to, r = 6378137)
radians <- pi/180
lat_to <- lat_to * radians
lat_from <- lat_from * radians
lon_to <- lon_to * radians
lon_from <- lon_from * radians
dLat <- (lat_to - lat_from)
dLon <- (lon_to - lon_from)
a <- (sin(dLat/2)^2) + (cos(lat_from) * cos(lat_to)) * (sin(dLon/2)^2)
return(2 * atan2(sqrt(a), sqrt(1 - a)) * r)
2019 年 7 月 18 日更新
也可以通过 Rcpp 编写 C++ 版本。
#include <Rcpp.h>
using namespace Rcpp;
double inverseHaversine(double d)
return 2 * atan2(sqrt(d), sqrt(1 - d)) * 6378137.0;
double distanceHaversine(double latf, double lonf, double latt, double lont,
double tolerance)
double d;
double dlat = latt - latf;
double dlon = lont - lonf;
d = (sin(dlat * 0.5) * sin(dlat * 0.5)) + (cos(latf) * cos(latt)) * (sin(dlon * 0.5) * sin(dlon * 0.5));
if(d > 1 && d <= tolerance)
d = 1;
return inverseHaversine(d);
double toRadians(double deg)
return deg * 0.01745329251; // PI / 180;
// [[Rcpp::export]]
Rcpp::NumericVector rcpp_distance_haversine(Rcpp::NumericVector latFrom, Rcpp::NumericVector lonFrom,
Rcpp::NumericVector latTo, Rcpp::NumericVector lonTo,
double tolerance)
int n = latFrom.size();
NumericVector distance(n);
double latf;
double latt;
double lonf;
double lont;
double dist = 0;
for(int i = 0; i < n; i++)
latf = toRadians(latFrom[i]);
lonf = toRadians(lonFrom[i]);
latt = toRadians(latTo[i]);
lont = toRadians(lonTo[i]);
dist = distanceHaversine(latf, lonf, latt, lont, tolerance);
distance[i] = dist;
return distance;
将此文件保存在某处并使用Rcpp::sourceCpp("distance_calcs.cpp")
将函数加载到您的 R 会话中。
以下是它们与原始 geosphere::distHaversine
和 geosphere::distGeo
相比的一些基准
我将对象设置为 85k 行只是为了更有意义
dt <- rbindlist(list(odmatrix, odmatrix, odmatrix, odmatrix, odmatrix, odmatrix))
dt <- rbindlist(list(dt, dt, dt, dt, dt, dt, dt, dt, dt, dt, dt, dt, dt, dt, dt, dt, dt, dt, dt))
dt1 <- copy(dt); dt2 <- copy(dt); dt3 <- copy(dt); dt4 <- copy(dt)
library(microbenchmark)
microbenchmark(
rcpp =
dt4[, dist := rcpp_distance_haversine(lat_orig, long_orig, lat_dest, long_dest, tolerance = 10000000000.0)]
,
dtHaversine =
dt1[, dist := dt.haversine(lat_orig, long_orig, lat_dest, long_dest)]
,
haversine =
dt2[ , dist := distHaversine(matrix(c(long_orig, lat_orig), ncol = 2),
matrix(c(long_dest, lat_dest), ncol = 2))]
,
geo =
dt3[ , dist := distGeo(matrix(c(long_orig, lat_orig), ncol = 2),
matrix(c(long_dest, lat_dest), ncol = 2))]
,
times = 5
)
# Unit: milliseconds
# expr min lq mean median uq max neval
# rcpp 5.622847 5.683959 6.208954 5.925277 6.036025 7.776664 5
# dtHaversine 9.024500 12.413380 12.335681 12.992920 13.590566 13.657037 5
# haversine 30.911136 33.628153 52.503700 36.038927 40.791089 121.149197 5
# geo 83.646104 83.971163 88.694377 89.548176 90.569327 95.737117 5
当然,由于两种不同技术(geo 和 hasrsine)计算距离的方式,结果会略有不同。
【讨论】:
您的解决方案是否以公里为单位返回结果? @rafa.pereira - 我想是米 您的解决方案的效率提升给我留下了深刻的印象,因此我授予您“接受”的答案。 @rafa.pereira 非常慷慨!实际上是你的解决方案启发了this answer haversine 公式的 C++ 版本(使用 Rcpp)被合并到 spatialrisk::haversine【参考方案2】:感谢@chinsoon12 的评论,我找到了一个结合distGeogeosphere
和data.table
的快速解决方案。在我的笔记本电脑中,快速解决方案比替代方案快 120 倍。
让我们把数据集做大来比较速度表现。
# Multiplicate data observations by 1000
odmatrix <- odmatrix[rep(seq_len(nrow(odmatrix)), 1000), ]
慢解
system.time(
odmatrix$dist_km <- sapply(1:nrow(odmatrix),function(i)
spDistsN1(as.matrix(odmatrix[i,2:3]),as.matrix(odmatrix[i,5:6]),longlat=T))
)
> user system elapsed
> 222.17 0.08 222.84
快速解决方案
# load library
library(geosphere)
# convert the data.frame to a data.table
setDT(odmatrix)
system.time(
odmatrix[ , dist_km2 := distGeo(matrix(c(long_orig, lat_orig), ncol = 2),
matrix(c(long_dest, lat_dest), ncol = 2))/1000]
)
> user system elapsed
> 1.76 0.03 1.79
【讨论】:
结果是否相同? 好点@EdzerPebesma。对于这个特定示例,结果大致相同(相差几厘米)。但是,对于更长的距离,差异可能会更大一些。这是因为spDistsN1sp
使用欧几里得或大圆点之间的距离,而distGeogeosphere
计算椭圆体上的距离以上是关于如何使用 data.table 有效地计算坐标对之间的距离:=的主要内容,如果未能解决你的问题,请参考以下文章
在列表中有效地重复data.table,从循环中的另一个data.table顺序替换具有相同名称的列