如何在 Matlab 中进行高效的 k 最近邻计算
Posted
技术标签:
【中文标题】如何在 Matlab 中进行高效的 k 最近邻计算【英文标题】:How to do efficient k-nearest neighbor calculation in Matlab 【发布时间】:2014-08-08 10:31:42 【问题描述】:我正在使用 Matlab 中的 k-最近邻算法进行数据分析。我的数据由大约 11795 x 88 数据矩阵组成,其中行是观察值,列是变量。
我的任务是为 n 个选定的测试点找到 k 最近邻。目前我正在使用以下逻辑:
对于所有的测试点
LOOP all the data and find the k-closest neighbors (by euclidean distance)
换句话说,我循环了所有 n 个测试点。对于每个测试点,我通过欧几里得距离搜索数据(不包括测试点本身)中的 k 最近邻。对于每个测试点,这大约需要 k x 11794 次迭代。所以整个过程大约需要 n x k x 11794 次迭代。如果 n = 10000 且 k = 7,这将是大约 8.256 亿次迭代。
有没有更有效的方法来计算 k 近邻?现在大部分计算都会浪费,因为我的算法很简单:
计算到所有其他点的欧几里德距离,选取最近的点并排除最近的点,不再考虑 --> 计算到所有其他点的欧几里德距离并选取最近的点 --> 等等 -->等等。
有没有一种聪明的方法可以摆脱这种“浪费计算”?
目前这个过程在我的电脑上大约需要 7 个小时(3.2 GHz,8 GB RAM,64 位 Win 7)... :(
以下是一些明确说明的逻辑(这不是我的全部代码,但这是消耗性能的部分):
for i = 1:size(testpoints, 1) % Loop all the test points
neighborcandidates = all_data_excluding_testpoints; % Use the rest of the data excluding the test points in search of the k-nearest neighbors
testpoint = testpoints(i, :); % This is the test point for which we find k-nearest neighbors
kneighbors = []; % Store the k-nearest neighbors here.
for j = 1:k % Find k-nearest neighbors
bdist = Inf; % The distance of the closest neighbor
bind = 0; % The index of the closest neighbor
for n = 1:size(neighborcandidates, 1) % Loop all the candidates
if pdist([testpoint; neighborcandidates(n, :)]) < bdist % Check the euclidean distance
bdist = pdist([testpoint; neighborcandidates(n, :)]); % Update the best distance so far
bind = n; % Save the best found index so far
end
end
kneighbors = [kneighbors; neighborcandidates(bind, :)]; % Save the found neighbour
neighborcandidates(bind, :) = []; % Remove the neighbor from further consideration
end
end
【问题讨论】:
加个小例子说明清楚。 有很多循环——如果你只是在整个矩阵上运行pdist2
作为一个输入,然后将n
观察的子集作为第二个输入矩阵,会发生什么?你的电脑能处理吗/你知道这需要多长时间吗?因为这样您就可以在一行中获得您正在寻找的所有元素的成对距离,并为每个 n
找到顶部的 n
观察结果应该非常简单......
嗨@Dan 我用pdist2
来计算距离。只用了不到一分钟。休息应该没问题=)所以这是一个显着的改进=)
@jjepsuomi 没问题,我已经添加了一个答案,展示了我将如何使用它
@jjepsuomi 另请参阅我对使用 Matlab 内置的答案knnsearch
【参考方案1】:
使用pdist2
:
A = rand(20,5); %// This is your 11795 x 88
B = A([1, 12, 4, 8], :); %// This is your n-by-88 subset, i.e. n=4 in this case
n = size(B,1);
D = pdist2(A,B);
[~, ind] = sort(D);
kneighbours = ind(2:2+k, :);
现在您可以使用kneighbours
来索引A
中的一行。注意kneighbours
的列对应B
的行
但既然您已经使用 pdist
进入统计工具箱,为什么不直接使用 Matlab 的 knnsearch
?
kneighbours_matlab = knnsearch(A,B,'K',k+1);
注意kneighbours
与kneighbours_matlab(:,2:end)'
相同
【讨论】:
+1 感谢您的帮助! =) 当我完成解决方案的实施后,我将发布预计的运行时间 =) 嗨@Dan 我决定使用pdist2
方法。运行时间现在大约是 30 秒 =) 所以运行时间大约快 x840 倍 x)【参考方案2】:
我不熟悉特定的 matlab 函数,但您可以从公式中删除 k。
有一个众所周知的选择算法
-
将数组 A(大小为 n)和数字 k 作为输入。
给出数组 A 的排列,使得第 k 个最大/最小元素位于第 k 个位置。
较小的元素位于左侧,较大的元素位于右侧。
例如
A=2,4,6,8,10,1,3,5,7,9; k=5
output = 2,4,1,3,5,10,6,8,7,9
这是在 O(n) 步中完成的,不依赖于 k。
EDIT1:您还可以预先计算所有距离,因为它看起来像是您花费大部分计算的地方。这将是一个大约 800M 的矩阵,所以这不应该是现代机器上的问题。
【讨论】:
现在我看了一下这个问题。您应该首先尝试 EDIT 建议,因为它更易于实施。请记住 dist[i,j] = dist[j,i] +1 感谢您的帮助! =)我会尝试建议,让大家知道时间改进=)【参考方案3】:我不确定它是否会加速代码,但它删除了内部的两个循环
for i = 1:size(testpoints, 1) % //Loop all the test points
temp = repmat(testpoints(i,:),size(neighborcandidates, 1),1);
euclead_dist = (sum((temp - neighborcandidates).^2,2).^(0.5));
[sort_dist ind] = sort(euclead_dist);
lowest_k_ind = ind(1:k);
kneighbors = neighborcandidates(lowest_k_ind, :);
neighborcandidates(lowest_k_ind, :) = [];
end
【讨论】:
【参考方案4】:这不行吗?
adjk = adj;
for i=1:k-1
adj_k = adj_k*adj;
end
kneigh = find(adj_k(n,:)>0)
给定一个节点 n 和一个索引 k?
【讨论】:
【参考方案5】:也许这是在 Matlab 上下文中更快的代码。您还可以尝试并行函数、数据索引和近似最近邻算法,以提高理论上的效率。
% a slightly faster way to find k nearest neighbors in matlab
% find neighbors for data Y from data X
m=size(X,1);
n=size(Y,1);
IDXs_out=zeros(n,k);
distM=(repmat(X(:,1),1,n)-repmat(Y(:,1)',m,1)).^2;
for d=2:size(Y,2)
distM=distM+(repmat(X(:,d),1,n)-repmat(Y(:,d)',m,1)).^2;
end
distM=sqrt(distM);
for i=1:k
[~,idx]=min(distM,[],1);
id=sub2ind(size(distM),idx',(1:n)');
distM(id)=inf;
IDXs_out(:,i)=idx';
end
【讨论】:
以上是关于如何在 Matlab 中进行高效的 k 最近邻计算的主要内容,如果未能解决你的问题,请参考以下文章