C# 中的激活函数列表

Posted

技术标签:

【中文标题】C# 中的激活函数列表【英文标题】:List of activation functions in C# 【发布时间】:2016-07-22 21:47:58 【问题描述】:

我可以在数学中找到激活函数列表,但在代码中找不到。 所以我想这将是代码中这样一个列表的正确位置,如果应该有的话。 从这两个链接中的算法翻译开始: https://en.wikipedia.org/wiki/Activation_function https://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons

目标是通过 UI 轻松访问 Activation 类(包含函数及其派生类)。

编辑: 我的尝试

using UnityEngine;
using System.Collections;
using System;

///<summary>
///Activation Functions from:
///https://en.wikipedia.org/wiki/Activation_function
///https://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
///D infront means the Deravitive of the function
///x is the input of one perceptron. a is the alpha value sometimes needed.
///</summary>
[System.Serializable]
public class Activation

    public ActivationType activationType;
    public Activation(ActivationType type)
    
        activationType = type;
    
    public double AFunction(double x)
    
        switch(activationType)
        
        case ActivationType.Identity:
            return Identity(x);
        case ActivationType.BinaryStep:
            return BinaryStep(x);
        case ActivationType.Logistic:
            return Logistic(x);
        case ActivationType.Tanh:
            return Tanh(x);
        case ActivationType.ArcTan:
            return ArcTan(x);
        case ActivationType.ReLU:
            return ReLU(x);
        case ActivationType.SoftPlus:
            return SoftPlus(x);
        case ActivationType.BentIdentity:
            return BentIdentity(x);
        case ActivationType.Sinusoid:
            return Sinusoid(x);
        case ActivationType.Sinc:
            return Sinc(x);
        case ActivationType.Gaussian:
            return Gaussian(x);
        case ActivationType.Bipolar:
            return Bipolar(x);
        case ActivationType.BipolarSigmoid:
            return BipolarSigmoid(x);
        
        return 0;
    
    public double ActivationDerivative(double x)
    
        switch(activationType)
        
        case ActivationType.Logistic:
            return DLogistic(x);
        case ActivationType.Tanh:
            return DTanh(x);
        case ActivationType.ArcTan:
            return DArcTan(x);
        case ActivationType.ReLU:
            return DReLU(x);
        case ActivationType.SoftPlus:
            return DSoftPlus(x);
        case ActivationType.BentIdentity:
            return DBentIdentity(x);
        case ActivationType.Sinusoid:
            return DSinusoid(x);
        case ActivationType.Sinc:
            return DSinc(x);
        case ActivationType.Gaussian:
            return DGaussian(x);
        case ActivationType.BipolarSigmoid:
            return DBipolarSigmoid(x);
        
        return 0;
    
    public double AFunction(double x, double a)
    
        switch(activationType)
        
        case ActivationType.PReLU:
            return PReLU(x,a);
        case ActivationType.ELU:
            return ELU(x,a);
        
        return 0;
    
    public double ActivationDerivative(double x, double a)
    
        switch(activationType)
        
        case ActivationType.PReLU:
            return DPReLU(x,a);
        case ActivationType.ELU:
            return DELU(x,a);
        
        return 0;
    
    public double Identity(double x)
    
        return x;
    

    public double BinaryStep(double x)
    
        return x < 0 ? 0 : 1;
    

    public double Logistic(double x)
    
        return 1/(1+Math.Pow(Math.E,-x));
    
    public double DLogistic(double x)
    
        return Logistic(x)*(1-Logistic(x));
    
    public double Tanh(double x)
    
        return 2/(1+Math.Pow(Math.E, -(2*x)))-1;
    
    public double DTanh(double x)
    
        return 1-Math.Pow(Tanh(x),2);
    
    public double ArcTan(double x)
    
        return Math.Atan(x);
    
    public double DArcTan(double x)
    
        return 1/Math.Pow(x,2)+1;
    
    //Rectified Linear Unit
    public double ReLU(double x)
    
        return Math.Max(0,x);// x < 0 ? 0 : x;
    
    public double DReLU(double x)
    
        return Math.Max(0,1);// x < 0 ? 0 : x;
    
    //Parameteric Rectified Linear Unit 
    public double PReLU(double x, double a)
    
        return x < 0 ? a*x : x;
    
    public double DPReLU(double x, double a)
    
        return x < 0 ? a : 1;
    
    //Exponential Linear Unit 
    public double ELU(double x, double a)
    
        return x < 0 ? a*(Math.Pow(Math.E, x) - 1) : x;
    
    public double DELU(double x, double a)
    
        return x < 0 ? ELU(x, a)+a: 1;
    
    public double SoftPlus(double x)
    
        return Math.Log(Math.Exp(x)+1);
    
    public double DSoftPlus(double x)
    
        return Logistic(x);
    
    public double BentIdentity(double x)
    
        return (((Math.Sqrt(Math.Pow(x,2)+1))-1)/2)+x;
    
    public double DBentIdentity(double x)
    
        return (x/(2*Math.Sqrt(Math.Pow(x,2)+1)))+1;
    
//  public float SoftExponential(float x)
//  
//
//  
    public double Sinusoid(double x)
    
        return Math.Sin(x);
    
    public double DSinusoid(double x)
    
        return Math.Cos(x);
    
    public double Sinc(double x)
    
        return x == 0 ? 1 : Math.Sin(x)/x;
    
    public double DSinc(double x)
    
        return x == 0 ? 0 : (Math.Cos(x)/x)-(Math.Sin(x)/Math.Pow(x,2));
    
    public double Gaussian(double x)
    
        return Math.Pow(Math.E, Math.Pow(-x, 2));
    
    public double DGaussian(double x)
    
        return -2*x*Math.Pow(Math.E, Math.Pow(-x,2));
    
    public double Bipolar(double x)
    
        return x < 0 ? -1:1;
    
    public double BipolarSigmoid(double x)
    
        return (1-Math.Exp(-x))/(1+Math.Exp(-x));
    
    public double DBipolarSigmoid(double x)
    
        return 0.5 * (1 + BipolarSigmoid(x)) * (1 - BipolarSigmoid(x));
    

    public double Scaler(double x, double min, double max)
    
        return (x - min) / (max - min);
    

public enum ActivationType

    Identity,
    BinaryStep,
    Logistic,
    Tanh,
    ArcTan,
    ReLU,
    PReLU,
    ELU,
    SoftPlus,
    BentIdentity,
    Sinusoid,
    Sinc,
    Gaussian,
    Bipolar,
    BipolarSigmoid

不确定我的数学是否正确,所以我没有将其发布为答案。 如果有人愿意进行错误检查,我可以将其作为答案。

【问题讨论】:

我尝试过这个,但不确定我是否正确翻译了所有数学...我现在应该将其作为答案发布吗? 如果它有效,它就是一个答案。如果这只是一次尝试,但您不知道它是否有效,则可以编辑“展示您的努力”类别中的问题。 DReLU 应该是x &lt; 0 ? 0 : 1; 【参考方案1】:

我发现了这个:Soft Exponential activation function

C# 转换:

public double SoftExponential(double x, double alpha = 0.0, double max_value = 0.0)


    // """Soft Exponential activation function by Godfrey and Gashler
    // See: https://arxiv.org/pdf/1602.01321.pdf
    // α == 0:  f(α, x) = x
    // α  > 0:  f(α, x) = (exp(αx)-1) / α + α
    // α< 0:  f(α, x) = -ln(1 - α(x + α)) / α
    // """

    if (alpha == 0)
        return x;
    else if (alpha > 0)
        return alpha + (Math.Exp(alpha * x) - 1.0) / alpha;
    else
        return -Math.Log(1 - alpha * (x + alpha)) / alpha;

【讨论】:

以上是关于C# 中的激活函数列表的主要内容,如果未能解决你的问题,请参考以下文章

C# 中的数学优化

神经网络中的激活函数

干货 | 深入理解深度学习中的激活函数

浅谈神经网络中的激活函数

神经网络中的激活函数

激活函数