Keras 多类图像分类和预测

Posted

技术标签:

【中文标题】Keras 多类图像分类和预测【英文标题】:Keras multiclass images classification and prediction 【发布时间】:2020-08-04 04:08:05 【问题描述】:

我正在使用ImageDataGenerator 进行图像分类。我的数据有这样的结构:

火车 101 102 103 104 测试 101 102 103 104

所以,如果我理解得很好,ImageGenerator 会自动执行所需的标记操作。 我训练模型,我得到了某种准确​​性。现在我想做预测。

- model.predict
- model.predict_proba
- model.predict_classes

所有这些都给了我相同的价值。您能否快速解释或参考(我找不到与我的问题有关的任何内容)我应该如何进行,或者我在代码中做了一些可怕的事情。最大的问题,我不明白 4 个不同类的输出会有什么不同。由于predict_classes 给了我一个输出[[1]],它不应该给我预测的类吗?

from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, MaxPool2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras.regularizers import l1, l2, l1_l2

model = Sequential()
model.add(Conv2D(60, (3, 3), input_shape=(480, 640,3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(60, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(100, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())  # this converts our 3D feature maps to 1D feature vectors
model.add(Dense(100, activation='relu', activity_regularizer=l1(0.001)))
#model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('softmax'))

model.compile(loss='binary_crossentropy',
              optimizer='Adam',
              metrics=['accuracy'])

batch_size = 32

# augmentation configuration for train
train_datagen = ImageDataGenerator(
        rotation_range=30,
        width_shift_range=0.2,
        height_shift_range=0.2,
        rescale=1./255,
        shear_range=0.2,
        zoom_range=0.2,
        horizontal_flip=False,
        vertical_flip=True,
        fill_mode = 'nearest')

# augmentation configuration for testing, only rescale
test_datagen = ImageDataGenerator(rescale=1./255)

# reading pictures and  generating batches of augmented image data

train_generator = train_datagen.flow_from_directory(
        '/media/data/working_dir/categories/readytotest/train',
        target_size=(480, 640),
        batch_size=batch_size,
        class_mode='binary')

validation_generator = test_datagen.flow_from_directory(
        '/media/data/working_dir/categories/readytotest/test',
        target_size=(480, 640),
        batch_size=batch_size,
        class_mode='binary')

model.fit_generator(
        train_generator,
        steps_per_epoch=800 // batch_size,
        epochs=15,
        validation_data=validation_generator,
        validation_steps=800 // batch_size)

【问题讨论】:

【参考方案1】:

您的模型和生成器不是用于多类而是二进制分类。首先,您需要修复模型最后一层以获得具有类大小的输出。其次,您需要修复生成器以在多类中使用。

(...)
model.add(Dense(CLS_SZ))
model.add(Activation('softmax'))
(...)

# I am not sure about this read some docs about generator you used.
train_generator = train_datagen.flow_from_directory(
        '/media/data/working_dir/categories/readytotest/train',
        target_size=(480, 640),
        batch_size=batch_size,
        class_mode=None)

validation_generator = test_datagen.flow_from_directory(
        '/media/data/working_dir/categories/readytotest/test',
        target_size=(480, 640),
        batch_size=batch_size,
        class_mode=None)

【讨论】:

首先非常感谢您的回答。一个问题,CLS_SZ 是什么意思? 它需要是你的班级规模。

以上是关于Keras 多类图像分类和预测的主要内容,如果未能解决你的问题,请参考以下文章

多类图像分类中如何获取权重图

在 Keras 中训练多类图像分类器

使用 Keras 进行分类:预测和多类

使用 Keras 稀疏分类交叉熵进行像素级多类分类

如何找出概率输出中每列的哪个类对应于使用Keras进行多类分类?

在 keras 中使用 CNN 对图像进行二值分类时正确预测的总数