如何从 R 中的 ngram 标记列表中有效地删除停用词

Posted

技术标签:

【中文标题】如何从 R 中的 ngram 标记列表中有效地删除停用词【英文标题】:How to remove stopwords efficiently from a list of ngram tokens in R 【发布时间】:2016-01-09 08:44:33 【问题描述】:

这里呼吁一种更好的方法来做一些我已经可以低效地做的事情:使用“停用词”过滤一系列 n-gram 标记,以便在n-gram 触发删除。

我非常希望有一种适用于 unigram 和 n-gram 的解决方案,尽管有两个版本是可以的,一个带有“固定”标志,一个带有“正则表达式”标志。我将问题的两个方面放在一起,因为有人可能有一个解决方案,它尝试了一种解决固定和正则表达式停用词模式的不同方法。

格式:

tokens 是字符向量列表,可以是 unigram 或由 _(下划线)字符连接的 n-gram。

停用词是一个字符向量。现在我满足于让它成为一个固定的字符串,但是如果能够使用正则表达式格式的停用词来实现它也是一个不错的奖励。

所需输出: 与输入 tokens 匹配的字符列表,但任何与停用词匹配的组件标记都被删除。 (这意味着 unigram 匹配,或匹配 n-gram 所包含的术语之一。)

示例、测试数据、工作代码和基准:

tokens1 <- list(text1 = c("this", "is", "a", "test", "text", "with", "a", "few", "words"), 
                text2 = c("some", "more", "words", "in", "this", "test", "text"))
tokens2 <- list(text1 = c("this_is", "is_a", "a_test", "test_text", "text_with", "with_a", "a_few", "few_words"), 
                text2 = c("some_more", "more_words", "words_in", "in_this", "this_text", "text_text"))
tokens3 <- list(text1 = c("this_is_a", "is_a_test", "a_test_text", "test_text_with", "text_with_a", "with_a_few", "a_few_words"),
                text2 = c("some_more_words", "more_words_in", "words_in_this", "in_this_text", "this_text_text"))
stopwords <- c("is", "a", "in", "this")

# remove any single token that matches a stopword
removeTokensOP1 <- function(w, stopwords) 
    lapply(w, function(x) x[-which(x %in% stopwords)])


# remove any word pair where a single word contains a stopword
removeTokensOP2 <- function(w, stopwords) 
    matchPattern <- paste0("(^|_)", paste(stopwords, collapse = "(_|$)|(^|_)"), "(_|$)")
    lapply(w, function(x) x[-grep(matchPattern, x)])


removeTokensOP1(tokens1, stopwords)
## $text1
## [1] "test"  "text"  "with"  "few"   "words"
## 
## $text2
## [1] "some"  "more"  "words" "test"  "text" 

removeTokensOP2(tokens1, stopwords)
## $text1
## [1] "test"  "text"  "with"  "few"   "words"
## 
## $text2
## [1] "some"  "more"  "words" "test"  "text" 

removeTokensOP2(tokens2, stopwords)
## $text1
## [1] "test_text" "text_with" "few_words"
## 
## $text2
## [1] "some_more"  "more_words" "text_text" 

removeTokensOP2(tokens3, stopwords)
## $text1
## [1] "test_text_with"
## 
## $text2
## [1] "some_more_words"

# performance benchmarks for answers to build on
require(microbenchmark)
microbenchmark(OP1_1 = removeTokensOP1(tokens1, stopwords),
               OP2_1 = removeTokensOP2(tokens1, stopwords),
               OP2_2 = removeTokensOP2(tokens2, stopwords),
               OP2_3 = removeTokensOP2(tokens3, stopwords),
               unit = "relative")
## Unit: relative
## expr      min       lq     mean   median       uq      max neval
## OP1_1 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000   100
## OP2_1 5.119066 3.812845 3.438076 3.714492 3.547187 2.838351   100
## OP2_2 5.230429 3.903135 3.509935 3.790143 3.631305 2.510629   100
## OP2_3 5.204924 3.884746 3.578178 3.753979 3.553729 8.240244   100

【问题讨论】:

tm或qdap中去除停用词的方法不够用?尽管它们以相反的方式工作,但首先删除停用词,然后创建 n-gram。 不,这很简单,我正在尝试找出一种在构建后删除包含停用词的 ngram 的有效方法。 你在 github 上查看过 Tyler Rinker,termco 的新包吗?这看起来很有希望。还没来得及检查。 基本上是grepl 的矢量化版本,用于用c 编写的长向量。是的,我也希望有人会这样写: @Rcore stringi 接近于此,但没有以此处所需的方式进行矢量化。出于这个原因,我没有在示例/基本代码中使用 stringi(尽管它具有许多其他吸引人的属性,但在我的测试中执行此任务的速度并不快)。但也许有人会证明我错了! 【参考方案1】:

这并不是一个真正的答案 - 更多的是对 rawr 关于遍历所有停用词组合的评论的评论。对于更长的stopwords 列表,使用类似%in% 的列表似乎不会遇到这种维度问题。

library(purrr)
removetokenstst <- function(tokens, stopwords) 
  map2(tokens, 
       lapply(tokens3, function(x)  
         unlist(lapply(strsplit(x, "_"), function(y)  
           any(y %in% stopwords) 
         )) 
       ), 
       ~ .x[!.y])

require(microbenchmark)
microbenchmark(OP1_1 = removeTokensOP1(tokens1, morestopwords),
           OP2_1 = removeTokensOP2(tokens1, morestopwords),
           OP2_2 = removeTokensOP2(tokens2, morestopwords),
           OP2_3 = removeTokensOP2(tokens3, morestopwords),
           Ak_3 = removetokenstst(tokens3, stopwords),
           Ak_3msw = removetokenstst(tokens3, morestopwords),
           unit = "relative")

Unit: relative
    expr       min        lq       mean    median        uq      max neval
   OP1_1   1.00000   1.00000   1.000000  1.000000  1.000000  1.00000   100
   OP2_1 278.48260 176.22273  96.462854 79.787932 76.904987 38.31767   100
   OP2_2 280.90242 181.22013  98.545148 81.407928 77.637006 64.94842   100
   OP2_3 279.43728 183.11366 114.879904 81.404236 82.614739 72.04741   100
    Ak_3  15.74301  14.83731   9.340444  7.902213  8.164234 11.27133   100
 Ak_3msw  18.57697  14.45574  12.936594  8.513725  8.997922 24.03969   100

停用词

morestopwords = c("a", "about", "above", "after", "again", "against", "all", 
"am", "an", "and", "any", "are", "arent", "as", "at", "be", "because", 
"been", "before", "being", "below", "between", "both", "but", 
"by", "cant", "cannot", "could", "couldnt", "did", "didnt", "do", 
"does", "doesnt", "doing", "dont", "down", "during", "each", 
"few", "for", "from", "further", "had", "hadnt", "has", "hasnt", 
"have", "havent", "having", "he", "hed", "hell", "hes", "her", 
"here", "heres", "hers", "herself", "him", "himself", "his", 
"how", "hows", "i", "id", "ill", "im", "ive", "if", "in", "into", 
"is", "isnt", "it", "its", "its", "itself", "lets", "me", "more", 
"most", "mustnt", "my", "myself", "no", "nor", "not", "of", "off", 
"on", "once", "only", "or", "other", "ought", "our", "ours", 
"ourselves", "out", "over", "own", "same", "shant", "she", "shed", 
"shell", "shes", "should", "shouldnt", "so", "some", "such", 
"than", "that", "thats", "the", "their", "theirs", "them", "themselves", 
"then", "there", "theres", "these", "they", "theyd", "theyll", 
"theyre", "theyve", "this", "those", "through", "to", "too", 
"under", "until", "up", "very", "was", "wasnt", "we", "wed", 
"well", "were", "weve", "were", "werent", "what", "whats", "when", 
"whens", "where", "wheres", "which", "while", "who", "whos", 
"whom", "why", "whys", "with", "wont", "would", "wouldnt", "you", 
"youd", "youll", "youre", "youve", "your", "yours", "yourself", 
"yourselves", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", 
"k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", 
"x", "y", "z")

【讨论】:

对,但这并不完全相同,因为%in% 是only matching against the table,即停用词的长度或拆分字符串时得到的任何内容,而grepl 是@987654322 @。所以对于stopwords &lt;- c("is", "a", "in", "this")%in% 有四件事要做,而 grepl 有更多事情要做,具体取决于目标向量和这些字符串的长度【参考方案2】:

如果您的列表中有多个级别,我们可以使用parallel 包改进lapply

创建多个关卡

tokens2 <- list(text1 = c("this_is", "is_a", "a_test", "test_text", "text_with", "with_a", "a_few", "few_words"), 
                text2 = c("some_more", "more_words", "words_in", "in_this", "this_text", "text_text"))
tokens2 <- lapply(1:500,function(x) sample(tokens2,1)[[1]])

我们这样做是因为并行包的设置需要大量开销,因此仅增加微基准测试的迭代次数将继续产生该成本。通过增加列表的大小,您会看到真正的改进。

library(parallel)
#Setup
cl <- detectCores()
cl <- makeCluster(cl)

#Two functions:

#original
removeTokensOP2 <- function(w, stopwords)  
  matchPattern <- paste0("(^|_)", paste(stopwords, collapse = "(_|$)|(^|_)"), "(_|$)")
  lapply(w, function(x) x[-grep(matchPattern, x)])


#new
removeTokensOPP <- function(w, stopwords) 
  matchPattern <- paste0("(^|_)", paste(stopwords, collapse = "(_|$)|(^|_)"), "(_|$)")
  return(w[-grep(matchPattern, w)])


#compare

microbenchmark(
  OP2_P = parLapply(cl,tokens2,removeTokensOPP,stopwords),
  OP2_2 = removeTokensOP2(tokens2, stopwords),
  unit = 'relative'
)

Unit: relative
  expr      min       lq     mean   median       uq      max neval
 OP2_P 1.000000 1.000000 1.000000 1.000000 1.000000  1.00000   100
 OP2_2 1.730565 1.653872 1.678781 1.562258 1.471347 10.11306   100

随着列表中级别数量的增加,性能将会提高。

【讨论】:

【参考方案3】:

你可以考虑简化你的正则表达式,^ 和 $ 会增加开销

remove_short <- function(x, stopwords) 
  stopwords_regexp <- paste0('(^|_)(', paste(stopwords, collapse = '|'), ')(_|$)')
  lapply(x, function(x) x[!grepl(stopwords_regexp, x)])

require(microbenchmark)
microbenchmark(OP1_1 = removeTokensOP1(tokens1, stopwords),
               OP2_1 = removeTokensOP2(tokens2, stopwords),
               OP2_2 = remove_short(tokens2, stopwords),
               unit = "relative")
Unit: relative
  expr      min       lq     mean   median       uq      max neval cld
 OP1_1 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000   100 a  
 OP2_1 5.178565 4.768749 4.465138 4.441130 4.262399 4.266905   100   c
 OP2_2 3.452386 3.247279 3.063660 3.068571 2.963794 2.948189   100  b 

【讨论】:

然后我从停用词“if”等中得到了“beautiful”的肯定匹配 你是对的。您的正则表达式仍然有一个小的优化:您可以将其写为 (^|_)(is|a|in|this)(_|$) 而不是 (^|_)is(_|$)|(^|_)a(_|$)|(^|_)in(_|$)|(^|_)this(_|$) 我已经编辑了我的答案以反映差异

以上是关于如何从 R 中的 ngram 标记列表中有效地删除停用词的主要内容,如果未能解决你的问题,请参考以下文章

如何有效地使用 CountVectorizer 来组合目录中所有文件的 ngram 计数?

如何有效地删除列表列表中的连续重复项?

从 Python 字符串中删除不在允许列表中的 HTML 标记

Bigram 在 weka 中包含停用词?

如何有效地复制列表中的特定值

如何有效地对 SQL 数据库中的记录进行版本控制