如何使用多输出分类器实现网格搜索 cv?
Posted
技术标签:
【中文标题】如何使用多输出分类器实现网格搜索 cv?【英文标题】:How to implement Grid search cv with multi output classifier? 【发布时间】:2020-12-01 10:32:38 【问题描述】:我正在处理一个数据集,必须做出两个预测,即 y 的 2 列,每列也是多类的。 因此,我正在使用 XGBoost 和 MultiOutput Classfier 并对其进行调整,我想使用 Grid Search CV。
xgb_clf = xgb.XGBClassifier(learning_rate=0.1,
n_estimators=3000,
max_depth=3,
min_child_weight=1,
subsample=0.8,
colsample_bytree=0.8,
objective='multi:softmax',
nthread=4,
num_class=9,
seed=27
)
model = MultiOutputClassifier(estimator=xgb_clf)
param_test1 = 'estimator__max_depth':[3],'estimator__min_child_weight':[4]
gsearch1 = GridSearchCV(estimator =model,
param_grid = param_test1, scoring='roc_auc',n_jobs=4,iid=False, cv=5)
gsearch1.fit(X_train_split,y_train_split)
gsearch1.grid_scores_, gsearch1.best_params_, gsearch1.best_score_
但是当我这样做时,我得到一个错误
_RemoteTraceback Traceback (most recent call last)
_RemoteTraceback:
"""
Traceback (most recent call last):
File "/usr/local/lib/python3.6/dist-packages/joblib/externals/loky/process_executor.py", line 431, in _process_worker
r = call_item()
File "/usr/local/lib/python3.6/dist-packages/joblib/externals/loky/process_executor.py", line 285, in __call__
return self.fn(*self.args, **self.kwargs)
File "/usr/local/lib/python3.6/dist-packages/joblib/_parallel_backends.py", line 595, in __call__
return self.func(*args, **kwargs)
File "/usr/local/lib/python3.6/dist-packages/joblib/parallel.py", line 253, in __call__
for func, args, kwargs in self.items]
File "/usr/local/lib/python3.6/dist-packages/joblib/parallel.py", line 253, in <listcomp>
for func, args, kwargs in self.items]
File "/usr/local/lib/python3.6/dist-packages/sklearn/model_selection/_validation.py", line 544, in _fit_and_score
test_scores = _score(estimator, X_test, y_test, scorer)
File "/usr/local/lib/python3.6/dist-packages/sklearn/model_selection/_validation.py", line 591, in _score
scores = scorer(estimator, X_test, y_test)
File "/usr/local/lib/python3.6/dist-packages/sklearn/metrics/_scorer.py", line 87, in __call__
*args, **kwargs)
File "/usr/local/lib/python3.6/dist-packages/sklearn/metrics/_scorer.py", line 300, in _score
raise ValueError("0 format is not supported".format(y_type))
ValueError: multiclass-multioutput format is not supported
"""
The above exception was the direct cause of the following exception:
ValueError Traceback (most recent call last)
<ipython-input-42-e53fdaaedf6b> in <module>()
5 gsearch1 = GridSearchCV(estimator =model,
6 param_grid = param_test1, scoring='roc_auc',n_jobs=4,iid=False, cv=5)
----> 7 gsearch1.fit(X_train_split,y_train_split)
8 gsearch1.grid_scores_, gsearch1.best_params_, gsearch1.best_score_
7 frames
/usr/local/lib/python3.6/dist-packages/sklearn/model_selection/_search.py in fit(self, X, y, groups, **fit_params)
708 return results
709
--> 710 self._run_search(evaluate_candidates)
711
712 # For multi-metric evaluation, store the best_index_, best_params_ and
/usr/local/lib/python3.6/dist-packages/sklearn/model_selection/_search.py in _run_search(self, evaluate_candidates)
1149 def _run_search(self, evaluate_candidates):
1150 """Search all candidates in param_grid"""
-> 1151 evaluate_candidates(ParameterGrid(self.param_grid))
1152
1153
/usr/local/lib/python3.6/dist-packages/sklearn/model_selection/_search.py in evaluate_candidates(candidate_params)
687 for parameters, (train, test)
688 in product(candidate_params,
--> 689 cv.split(X, y, groups)))
690
691 if len(out) < 1:
/usr/local/lib/python3.6/dist-packages/joblib/parallel.py in __call__(self, iterable)
1040
1041 with self._backend.retrieval_context():
-> 1042 self.retrieve()
1043 # Make sure that we get a last message telling us we are done
1044 elapsed_time = time.time() - self._start_time
/usr/local/lib/python3.6/dist-packages/joblib/parallel.py in retrieve(self)
919 try:
920 if getattr(self._backend, 'supports_timeout', False):
--> 921 self._output.extend(job.get(timeout=self.timeout))
922 else:
923 self._output.extend(job.get())
/usr/local/lib/python3.6/dist-packages/joblib/_parallel_backends.py in wrap_future_result(future, timeout)
540 AsyncResults.get from multiprocessing."""
541 try:
--> 542 return future.result(timeout=timeout)
543 except CfTimeoutError as e:
544 raise TimeoutError from e
/usr/lib/python3.6/concurrent/futures/_base.py in result(self, timeout)
430 raise CancelledError()
431 elif self._state == FINISHED:
--> 432 return self.__get_result()
433 else:
434 raise TimeoutError()
/usr/lib/python3.6/concurrent/futures/_base.py in __get_result(self)
382 def __get_result(self):
383 if self._exception:
--> 384 raise self._exception
385 else:
386 return self._result
ValueError: multiclass-multioutput format is not supported
我认为错误发生在我使用 roc_auc 作为我的评分方法但我不知道如何解决它。我应该使用其他评分方法吗?
【问题讨论】:
请编辑并为您的问题添加更多上下文:您正在使用哪种技术、平台和运行时环境,您正在解决什么问题。另外,请说明您要达到的目标。 【参考方案1】:是的,你想的没错。问题在于 ROC AUC 分数对二元分类情况有效。相反,您可以使用所有班级的 ROC AUC 分数的平均值。
# from https://***.com/questions/39685740/calculate-sklearn-roc-auc-score-for-multi-class
from sklearn.metrics import roc_auc_score
import numpy as np
def roc_auc_score_multiclass(actual_class, pred_class, average = "macro"):
#creating a set of all the unique classes using the actual class list
unique_class = set(actual_class)
roc_auc_dict =
for per_class in unique_class:
#creating a list of all the classes except the current class
other_class = [x for x in unique_class if x != per_class]
#marking the current class as 1 and all other classes as 0
new_actual_class = [0 if x in other_class else 1 for x in actual_class]
new_pred_class = [0 if x in other_class else 1 for x in pred_class]
#using the sklearn metrics method to calculate the roc_auc_score
roc_auc = roc_auc_score(new_actual_class, new_pred_class, average = average)
roc_auc_dict[per_class] = roc_auc
return np.mean([x for x in roc_auc_dict.values()])
使用此函数,您可以获得每个班级相对于所有其他班级的 ROC AUC 分数。然后,您可以取该值的平均值并将其用作得分手。您可能需要使用 make_scorer
函数 (https://scikit-learn.org/stable/modules/generated/sklearn.metrics.make_scorer.html) 将函数转换为记分器对象。
【讨论】:
我的问题不是多类。我的问题是我有多个输出,即我的模型预测了两列 y。所以,我需要评估它们。 是的,所以提供的函数可以满足您的需求,它接收 2 个数组并计算 ROC AUC 并计算所有 ROC AUC 的平均值/以上是关于如何使用多输出分类器实现网格搜索 cv?的主要内容,如果未能解决你的问题,请参考以下文章
如何使用作为迭代器的训练数据进行 scikit-learn 网格搜索