如何加载 caffe 模型并转换为 numpy 数组?

Posted

技术标签:

【中文标题】如何加载 caffe 模型并转换为 numpy 数组?【英文标题】:How do I load a caffe model and convert to a numpy array? 【发布时间】:2017-12-25 06:16:27 【问题描述】:

我有一个 caffemodel 文件,其中包含 ethereon 的 caffe-tensorflow 转换实用程序不支持的层。我想为我的 caffemodel 生成一个 numpy 表示。

我的问题是,如何将 caffemodel 文件(我也有 prototxt,如果有用的话)转换为 numpy 文件?

附加信息:我安装了 python、caffe 和 python 接口等。我显然对咖啡没有经验。

【问题讨论】:

【参考方案1】:

这是一个不错的函数,可以将 caffe 网络转换为 python 字典列表,因此您可以随意腌制它并阅读它:

import caffe

def shai_net_to_py_readable(prototxt_filename, caffemodel_filename):
  net = caffe.Net(prototxt_filename, caffemodel_filename, caffe.TEST) # read the net + weights
  pynet_ = [] 
  for li in xrange(len(net.layers)):  # for each layer in the net
    layer =   # store layer's information
    layer['name'] = net._layer_names[li]
    # for each input to the layer (aka "bottom") store its name and shape
    layer['bottoms'] = [(net._blob_names[bi], net.blobs[net._blob_names[bi]].data.shape) 
                         for bi in list(net._bottom_ids(li))] 
    # for each output of the layer (aka "top") store its name and shape
    layer['tops'] = [(net._blob_names[bi], net.blobs[net._blob_names[bi]].data.shape) 
                      for bi in list(net._top_ids(li))]
    layer['type'] = net.layers[li].type  # type of the layer
    # the internal parameters of the layer. not all layers has weights.
    layer['weights'] = [net.layers[li].blobs[bi].data[...] 
                        for bi in xrange(len(net.layers[li].blobs))]
    pynet_.append(layer)
  return pynet_

【讨论】:

以上是关于如何加载 caffe 模型并转换为 numpy 数组?的主要内容,如果未能解决你的问题,请参考以下文章

将张量变量(非常数)转换为 numpy 数组? [复制]

如何将 caffe prototxt 转换为 pytorch 模型?

[caffe]Python加载训练caffe模型并进行测试2

如何将经过训练的 caffe 模型以 h5 格式加载到 c++ caffe 网络?

PyTorch 1.0 中文官方教程:使用ONNX将模型从PyTorch传输到Caffe2和移动端

Yolov8从pytorch到caffe 训练模型并转换到caffemodel