如何检查决策树和朴素贝叶斯的准确性?
Posted
技术标签:
【中文标题】如何检查决策树和朴素贝叶斯的准确性?【英文标题】:How Check accuracy in Decision tree and naive Bayes? 【发布时间】:2020-01-18 11:29:56 【问题描述】:在具有不同症状的决策树和朴素贝叶斯算法中表现出相同的准确性
我试图获得不同的准确度,但所有结果都保持不变
这个项目是关于疾病预测的
#decision_tree
from sklearn import tree
from sklearn.metrics import accuracy_score
decision_tree = tree.DecisiontTreeClassifier()
decision_tree = decision_tree.fit(train_x,train_y)
res_pred = decision_tree.predict(x_test)
print(accuracy_score(y_test,res_pred))
#naive_bayes
from sklearn.naive_bayes import GaussuanNB
gnb = gnb.fit(train_x,np.ravel(train_y))
y_pred = gnb.predict(x_test)
print(accuracy_score(y_test,y_pred)
结果始终为 0.9512195121951219
【问题讨论】:
【参考方案1】:通常有一些机器学习问题非常简单,以至于几乎每个模型在它们上的表现都一样好。要从两个模型中获得不同的结果,请尝试更改它们的超参数(例如将决策树的最大深度设置为 1)。
【讨论】:
以上是关于如何检查决策树和朴素贝叶斯的准确性?的主要内容,如果未能解决你的问题,请参考以下文章