深度学习 UNet 收敛

Posted

技术标签:

【中文标题】深度学习 UNet 收敛【英文标题】:Deep Learning UNet convergence 【发布时间】:2019-09-25 23:04:19 【问题描述】:

我正在编写一个深度学习 UNet 模型,用于 RGB 256 * 256p 图像 -> 灰度图像的图像分割 灵感来自 https://github.com/zhixuhao/unet, 所以我的神经网络有以下结构:

__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_1 (InputLayer)            (None, 256, 256, 3)  0                                            
__________________________________________________________________________________________________
conv2d_1 (Conv2D)               (None, 256, 256, 16) 448         input_1[0][0]                    
__________________________________________________________________________________________________
batch_normalization_1 (BatchNor (None, 256, 256, 16) 64          conv2d_1[0][0]                   
__________________________________________________________________________________________________
conv2d_2 (Conv2D)               (None, 256, 256, 16) 2320        batch_normalization_1[0][0]      
__________________________________________________________________________________________________
batch_normalization_2 (BatchNor (None, 256, 256, 16) 64          conv2d_2[0][0]                   
__________________________________________________________________________________________________
max_pooling2d_1 (MaxPooling2D)  (None, 128, 128, 16) 0           batch_normalization_2[0][0]      
__________________________________________________________________________________________________
conv2d_3 (Conv2D)               (None, 128, 128, 32) 4640        max_pooling2d_1[0][0]            
__________________________________________________________________________________________________
batch_normalization_3 (BatchNor (None, 128, 128, 32) 128         conv2d_3[0][0]                   
__________________________________________________________________________________________________
conv2d_4 (Conv2D)               (None, 128, 128, 32) 9248        batch_normalization_3[0][0]      
__________________________________________________________________________________________________
batch_normalization_4 (BatchNor (None, 128, 128, 32) 128         conv2d_4[0][0]                   
__________________________________________________________________________________________________
max_pooling2d_2 (MaxPooling2D)  (None, 64, 64, 32)   0           batch_normalization_4[0][0]      
__________________________________________________________________________________________________
conv2d_5 (Conv2D)               (None, 64, 64, 64)   18496       max_pooling2d_2[0][0]            
__________________________________________________________________________________________________
batch_normalization_5 (BatchNor (None, 64, 64, 64)   256         conv2d_5[0][0]                   
__________________________________________________________________________________________________
conv2d_6 (Conv2D)               (None, 64, 64, 64)   36928       batch_normalization_5[0][0]      
__________________________________________________________________________________________________
batch_normalization_6 (BatchNor (None, 64, 64, 64)   256         conv2d_6[0][0]                   
__________________________________________________________________________________________________
max_pooling2d_3 (MaxPooling2D)  (None, 32, 32, 64)   0           batch_normalization_6[0][0]      
__________________________________________________________________________________________________
conv2d_7 (Conv2D)               (None, 32, 32, 128)  73856       max_pooling2d_3[0][0]            
__________________________________________________________________________________________________
batch_normalization_7 (BatchNor (None, 32, 32, 128)  512         conv2d_7[0][0]                   
__________________________________________________________________________________________________
conv2d_8 (Conv2D)               (None, 32, 32, 128)  147584      batch_normalization_7[0][0]      
__________________________________________________________________________________________________
batch_normalization_8 (BatchNor (None, 32, 32, 128)  512         conv2d_8[0][0]                   
__________________________________________________________________________________________________
dropout_1 (Dropout)             (None, 32, 32, 128)  0           batch_normalization_8[0][0]      
__________________________________________________________________________________________________
max_pooling2d_4 (MaxPooling2D)  (None, 16, 16, 128)  0           dropout_1[0][0]                  
__________________________________________________________________________________________________
conv2d_9 (Conv2D)               (None, 16, 16, 256)  295168      max_pooling2d_4[0][0]            
__________________________________________________________________________________________________
batch_normalization_9 (BatchNor (None, 16, 16, 256)  1024        conv2d_9[0][0]                   
__________________________________________________________________________________________________
conv2d_10 (Conv2D)              (None, 16, 16, 256)  590080      batch_normalization_9[0][0]      
__________________________________________________________________________________________________
batch_normalization_10 (BatchNo (None, 16, 16, 256)  1024        conv2d_10[0][0]                  
__________________________________________________________________________________________________
dropout_2 (Dropout)             (None, 16, 16, 256)  0           batch_normalization_10[0][0]     
__________________________________________________________________________________________________
up_sampling2d_1 (UpSampling2D)  (None, 32, 32, 256)  0           dropout_2[0][0]                  
__________________________________________________________________________________________________
conv2d_11 (Conv2D)              (None, 32, 32, 128)  131200      up_sampling2d_1[0][0]            
__________________________________________________________________________________________________
concatenate_1 (Concatenate)     (None, 32, 32, 256)  0           dropout_1[0][0]                  
                                                                 conv2d_11[0][0]                  
__________________________________________________________________________________________________
conv2d_12 (Conv2D)              (None, 32, 32, 128)  295040      concatenate_1[0][0]              
__________________________________________________________________________________________________
batch_normalization_11 (BatchNo (None, 32, 32, 128)  512         conv2d_12[0][0]                  
__________________________________________________________________________________________________
conv2d_13 (Conv2D)              (None, 32, 32, 128)  147584      batch_normalization_11[0][0]     
__________________________________________________________________________________________________
batch_normalization_12 (BatchNo (None, 32, 32, 128)  512         conv2d_13[0][0]                  
__________________________________________________________________________________________________
up_sampling2d_2 (UpSampling2D)  (None, 64, 64, 128)  0           batch_normalization_12[0][0]     
__________________________________________________________________________________________________
conv2d_14 (Conv2D)              (None, 64, 64, 64)   32832       up_sampling2d_2[0][0]            
__________________________________________________________________________________________________
concatenate_2 (Concatenate)     (None, 64, 64, 128)  0           conv2d_6[0][0]                   
                                                                 conv2d_14[0][0]                  
__________________________________________________________________________________________________
conv2d_15 (Conv2D)              (None, 64, 64, 64)   73792       concatenate_2[0][0]              
__________________________________________________________________________________________________
batch_normalization_13 (BatchNo (None, 64, 64, 64)   256         conv2d_15[0][0]                  
__________________________________________________________________________________________________
conv2d_16 (Conv2D)              (None, 64, 64, 64)   36928       batch_normalization_13[0][0]     
__________________________________________________________________________________________________
batch_normalization_14 (BatchNo (None, 64, 64, 64)   256         conv2d_16[0][0]                  
__________________________________________________________________________________________________
up_sampling2d_3 (UpSampling2D)  (None, 128, 128, 64) 0           batch_normalization_14[0][0]     
__________________________________________________________________________________________________
conv2d_17 (Conv2D)              (None, 128, 128, 32) 8224        up_sampling2d_3[0][0]            
__________________________________________________________________________________________________
concatenate_3 (Concatenate)     (None, 128, 128, 64) 0           conv2d_4[0][0]                   
                                                                 conv2d_17[0][0]                  
__________________________________________________________________________________________________
conv2d_18 (Conv2D)              (None, 128, 128, 32) 18464       concatenate_3[0][0]              
__________________________________________________________________________________________________
batch_normalization_15 (BatchNo (None, 128, 128, 32) 128         conv2d_18[0][0]                  
__________________________________________________________________________________________________
conv2d_19 (Conv2D)              (None, 128, 128, 32) 9248        batch_normalization_15[0][0]     
__________________________________________________________________________________________________
batch_normalization_16 (BatchNo (None, 128, 128, 32) 128         conv2d_19[0][0]                  
__________________________________________________________________________________________________
up_sampling2d_4 (UpSampling2D)  (None, 256, 256, 32) 0           batch_normalization_16[0][0]     
__________________________________________________________________________________________________
conv2d_20 (Conv2D)              (None, 256, 256, 16) 2064        up_sampling2d_4[0][0]            
__________________________________________________________________________________________________
concatenate_4 (Concatenate)     (None, 256, 256, 32) 0           conv2d_2[0][0]                   
                                                                 conv2d_20[0][0]                  
__________________________________________________________________________________________________
conv2d_21 (Conv2D)              (None, 256, 256, 16) 4624        concatenate_4[0][0]              
__________________________________________________________________________________________________
batch_normalization_17 (BatchNo (None, 256, 256, 16) 64          conv2d_21[0][0]                  
__________________________________________________________________________________________________
conv2d_22 (Conv2D)              (None, 256, 256, 16) 2320        batch_normalization_17[0][0]     
__________________________________________________________________________________________________
batch_normalization_18 (BatchNo (None, 256, 256, 16) 64          conv2d_22[0][0]                  
__________________________________________________________________________________________________
conv2d_23 (Conv2D)              (None, 256, 256, 2)  290         batch_normalization_18[0][0]     
__________________________________________________________________________________________________
batch_normalization_19 (BatchNo (None, 256, 256, 2)  8           conv2d_23[0][0]                  
__________________________________________________________________________________________________
dropout_3 (Dropout)             (None, 256, 256, 2)  0           batch_normalization_19[0][0]     
__________________________________________________________________________________________________
MLP_layer (Conv2D)              (None, 256, 256, 1)  3           dropout_3[0][0]                  
==================================================================================================

但是,收敛非常困难,它只适用于非常有限的参数集: - 学习率不大于 1e-3,在某些文章中使用 1e-2 和 Decay - 第一个卷积过滤器编号仅适用于 16(下一层 32,等等...) - 批量大小 8 或 16,而 32 和 64 不起作用 - batch_normalization 是必需的,而不是在示例基本模型中。这应该有助于网络以更少的限制参数学习...https://towardsdatascience.com/batch-normalization-theory-and-how-to-use-it-with-tensorflow-1892ca0173ad? https://arxiv.org/pdf/1502.03167.pdf

另一个细节: - 我检查了我的输入是 np.float32,范围从 0 到 1 - 我正在努力学习卫星图像地籍

所以我的问题是:

为什么我的网络不能使用参考文章中使用的相同参数?

-> 我必须设置“慢”参数才能使其工作(更低的学习率、更低的批量大小、更少的卷积层......)。否则它会输出具有单个像素值的灰度图像,

使用的代码:

SHAPE=256
DIM=3
INITIALIZER='glorot_uniform'
BASE_SIZE=16
LR=0.001


def get_model(pretrained_model: str = None, input_size: tuple_int = (SHAPE, SHAPE, DIM)) -> Sequential:
"""
Machine learning model for image learning, here the purpose is segmentation,
thus there should be upsampling !!

Parameters
----------
pretrained_model: str
    name of .hdf5 file containing pretrained weights, syntax: 'dir:weight.hfd5'
input_size: tuple_int

Returns
-------
Sequential
"""
if pretrained_model:
    return read_model(pretrained_model)
else:
    inputs = Input(input_size)
    conv1 = Conv2D(BASE_SIZE, 3, activation='relu', padding='same', kernel_initializer=INITIALIZER)(inputs)
    batch_norm1 = BatchNormalization()(conv1)

    conv2 = Conv2D(BASE_SIZE, 3, activation='relu', padding='same', kernel_initializer=INITIALIZER)(batch_norm1)
    batch_norm2 = BatchNormalization()(conv2)
    pool1 = MaxPooling2D(pool_size=(2, 2))(batch_norm2)

    conv3 = Conv2D(BASE_SIZE * 2, 3, activation='relu', padding='same', kernel_initializer=INITIALIZER)(pool1)
    batch_norm3 = BatchNormalization()(conv3)

    conv4 = Conv2D(BASE_SIZE * 2, 3, activation='relu', padding='same', kernel_initializer=INITIALIZER)(batch_norm3)
    batch_norm4 = BatchNormalization()(conv4)
    pool2 = MaxPooling2D(pool_size=(2, 2))(batch_norm4)

    conv5 = Conv2D(BASE_SIZE * 4, 3, activation='relu', padding='same', kernel_initializer=INITIALIZER)(pool2)
    batch_norm5 = BatchNormalization()(conv5)

    conv6 = Conv2D(BASE_SIZE * 4, 3, activation='relu', padding='same', kernel_initializer=INITIALIZER)(batch_norm5)
    batch_norm6 = BatchNormalization()(conv6)
    pool3 = MaxPooling2D(pool_size=(2, 2))(batch_norm6)

    conv7 = Conv2D(BASE_SIZE * 8, 3, activation='relu', padding='same', kernel_initializer=INITIALIZER)(pool3)
    batch_norm7 = BatchNormalization()(conv7)

    conv8 = Conv2D(BASE_SIZE * 8, 3, activation='relu', padding='same', kernel_initializer=INITIALIZER)(batch_norm7)
    batch_norm8 = BatchNormalization()(conv8)

    drop4 = Dropout(0.2)(batch_norm8)
    pool4 = MaxPooling2D(pool_size=(2, 2))(drop4)

    conv9 = Conv2D(BASE_SIZE * 16, 3, activation='relu', padding='same', kernel_initializer=INITIALIZER)(pool4)
    batch_norm9 = BatchNormalization()(conv9)

    conv10 = Conv2D(BASE_SIZE * 16, 3, activation='relu', padding='same', kernel_initializer=INITIALIZER)(
        batch_norm9)
    batch_norm10 = BatchNormalization()(conv10)

    drop5 = Dropout(0.5)(batch_norm10)

    up6 = Conv2D(BASE_SIZE * 8, 2, activation='relu', padding='same', kernel_initializer=INITIALIZER)(
        UpSampling2D(size=(2, 2))(drop5))
    merge6 = concatenate([drop4, up6], axis=3)

    conv11 = Conv2D(BASE_SIZE * 8, 3, activation='relu', padding='same', kernel_initializer=INITIALIZER)(merge6)
    batch_norm11 = BatchNormalization()(conv11)

    conv12 = Conv2D(BASE_SIZE * 8, 3, activation='relu', padding='same', kernel_initializer=INITIALIZER)(
        batch_norm11)
    batch_norm12 = BatchNormalization()(conv12)

    up7 = Conv2D(BASE_SIZE * 4, 2, activation='relu', padding='same', kernel_initializer=INITIALIZER)(
        UpSampling2D(size=(2, 2))(batch_norm12))
    merge7 = concatenate([conv6, up7], axis=3)
    conv13 = Conv2D(BASE_SIZE * 4, 3, activation='relu', padding='same', kernel_initializer=INITIALIZER)(merge7)
    batch_norm13 = BatchNormalization()(conv13)

    conv14 = Conv2D(BASE_SIZE * 4, 3, activation='relu', padding='same', kernel_initializer=INITIALIZER)(
        batch_norm13)
    batch_norm14 = BatchNormalization()(conv14)

    up8 = Conv2D(BASE_SIZE * 2, 2, activation='relu', padding='same', kernel_initializer=INITIALIZER)(
        UpSampling2D(size=(2, 2))(batch_norm14))
    merge8 = concatenate([conv4, up8], axis=3)

    conv15 = Conv2D(BASE_SIZE * 2, 3, activation='relu', padding='same', kernel_initializer=INITIALIZER)(merge8)
    batch_norm15 = BatchNormalization()(conv15)

    conv16 = Conv2D(BASE_SIZE * 2, 3, activation='relu', padding='same', kernel_initializer=INITIALIZER)(
        batch_norm15)
    batch_norm16 = BatchNormalization()(conv16)

    up9 = Conv2D(BASE_SIZE, 2, activation='relu', padding='same', kernel_initializer=INITIALIZER)(
        UpSampling2D(size=(2, 2))(batch_norm16))
    merge9 = concatenate([conv2, up9], axis=3)

    conv17 = Conv2D(BASE_SIZE, 3, activation='relu', padding='same', kernel_initializer=INITIALIZER)(merge9)
    batch_norm17 = BatchNormalization()(conv17)

    conv18 = Conv2D(BASE_SIZE, 3, activation='relu', padding='same', kernel_initializer=INITIALIZER)(batch_norm17)
    batch_norm18 = BatchNormalization()(conv18)

    conv19 = Conv2D(2, 3, activation='relu', padding='same', kernel_initializer=INITIALIZER)(batch_norm18)
    batch_norm19 = BatchNormalization()(conv19)

    # personall add
    drop4 = Dropout(0.2)(batch_norm19)

    conv10 = Conv2D(1, 1, activation='sigmoid', name='MLP_layer')(drop4)

    model = Model(input=inputs, output=conv10)

    model.compile(optimizer=Adam(lr=LR),
                  loss='binary_crossentropy',
                  metrics=['accuracy', iou_loss])

    return model

谢谢

【问题讨论】:

在使用 Unet 时遇到了类似的问题。 BatchNormalization 是必不可少的,batch_sizes 和学习率也很低。也会对正确的答案感兴趣。 您的 UNet 的目标是什么?图像分割也是? @阿纳金 是的。关于卫星数据。 @Anakin project.inria.fr/aerialimagelabeling ?这是“我要解决的挑战” 你能发布用于创建网络的代码吗?你确定在最后一层使用 sigmoid 吗? 【参考方案1】:

二元交叉熵不能很好地解决分段问题,尤其是在您存在类别不平衡的情况下。例如,如果掩码平均包含比白色像素多得多的黑色像素,那么您的神经网络感觉可以将所有内容预测为黑色。尝试使用 Dice 损失或 Jaccard 损失作为您的目标函数,或者您可以使用具有二元交叉熵或加权二元交叉熵的 Dice 或 Jaccard 之和。最后,您可以看看这个库https://segmentation-models.readthedocs.io/en/latest/install.html,其中包含一些分割模型,包括具有不同预训练编码器的 Unet 和该主题最常见的指标(例如 Dice 和 Jaccard)。

【讨论】:

以上是关于深度学习 UNet 收敛的主要内容,如果未能解决你的问题,请参考以下文章

「深度学习一遍过」必修24:基于UNet的Semantic Segmentation

「深度学习一遍过」必修24:基于UNet的Semantic Segmentation

深度学习系列分割网络模型(FCNUnetUnet++SegNetRefineNet)

深度学习UNet案例

深度学习UNet案例

深度学习语义分割实验:Unet网络/MSRC2数据集