如何查看每个单词的 tf-idf 分数

Posted

技术标签:

【中文标题】如何查看每个单词的 tf-idf 分数【英文标题】:how to view tf-idf score against each word 【发布时间】:2019-11-16 17:38:15 【问题描述】:

我试图了解文档中每个单词的tf-idf 分数。但是,它只返回矩阵中的值,但我看到 tf-idf 每个单词的分数的特定表示类型。

我使用了处理后的代码,但我想改变它的呈现方式:

代码:

from sklearn.feature_extraction.text import CountVectorizer 
from sklearn.feature_extraction.text import TfidfTransformer

bow_transformer = CountVectorizer(analyzer=text_process).fit(df["comments"].head())
print(len(bow_transformer.vocabulary_))

tfidf_transformer = CountVectorizer(analyzer=text_process).fit(messages['message'])
bow_transformer.vocabulary_transformer().fit(message_bow)

message_tfidf = tfidf_transformer.transform(message_bow)

我得到这样的结果(39028,01),(1393,1672)。但是,我希望结果会像

features    tfidf
fruit       0.00344
excellent   0.00289

【问题讨论】:

【参考方案1】:

您可以使用以下代码实现上述结果:

def extract_topn_from_vector(feature_names, sorted_items, topn=5):
    """
      get the feature names and tf-idf score of top n items in the doc,                 
      in descending order of scores. 
    """

    # use only top n items from vector.
    sorted_items = sorted_items[:topn]

    results=  
    # word index and corresponding tf-idf score
    for idx, score in sorted_items:
        results[feature_names[idx]] = round(score, 3)

    # return a sorted list of tuples with feature name and tf-idf score as its element(in descending order of tf-idf scores).
    return sorted(results.items(), key=lambda kv: kv[1], reverse=True)

feature_names = count_vect.get_feature_names()
coo_matrix = message_tfidf.tocoo()
tuples = zip(coo_matrix.col, coo_matrix.data)
sorted_items = sorted(tuples, key=lambda x: (x[1], x[0]), reverse=True)

# extract only the top n elements.
# Here, n is 10.
word_tfidf = extract_topn_from_vector(feature_names, sorted_items, 10)

print("  ".format("features", "tfidf"))  
for k in word_tfidf:
    print(" - ".format(k[0], k[1])) 

查看下面的完整代码,以更好地了解上面的代码 sn-p。 下面的代码是不言自明的。

完整代码:

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from nltk.corpus import stopwords
import string
import nltk
import pandas as pd

data = pd.read_csv('yourfile.csv')

stops = set(stopwords.words("english"))
wl = nltk.WordNetLemmatizer()

def clean_text(text):
    """
      - Remove Punctuations
      - Tokenization
      - Remove Stopwords
      - stemming/lemmatizing
    """
    text_nopunct = "".join([char for char in text if char not in string.punctuation])
    tokens = re.split("\W+", text)
    text = [word for word in tokens if word not in stops]
    text = [wl.lemmatize(word) for word in text]
    return text

def extract_topn_from_vector(feature_names, sorted_items, topn=5):
    """
      get the feature names and tf-idf score of top n items in the doc,                 
      in descending order of scores. 
    """

    # use only top n items from vector.
    sorted_items = sorted_items[:topn]

    results=  
    # word index and corresponding tf-idf score
    for idx, score in sorted_items:
        results[feature_names[idx]] = round(score, 3)

    # return a sorted list of tuples with feature name and tf-idf score as its element(in descending order of tf-idf scores).
    return sorted(results.items(), key=lambda kv: kv[1], reverse=True)

count_vect = CountVectorizer(analyzer=clean_text, tokenizer = None, preprocessor = None, stop_words = None, max_features = 5000)                                        
freq_term_matrix = count_vect.fit_transform(data['text_body'])

tfidf = TfidfTransformer(norm="l2")
tfidf.fit(freq_term_matrix)  

feature_names = count_vect.get_feature_names()

# sample document
doc = 'watched horrid thing TV. Needless say one movies watch see much worse get.'

tf_idf_vector = tfidf.transform(count_vect.transform([doc]))

coo_matrix = tf_idf_vector.tocoo()
tuples = zip(coo_matrix.col, coo_matrix.data)
sorted_items = sorted(tuples, key=lambda x: (x[1], x[0]), reverse=True)

# extract only the top n elements.
# Here, n is 10.
word_tfidf = extract_topn_from_vector(feature_names,sorted_items,10)

print("  ".format("features", "tfidf"))  
for k in word_tfidf:
    print(" - ".format(k[0], k[1])) 

示例输出:

features  tfidf
Needless - 0.515
horrid - 0.501
worse - 0.312
watched - 0.275
TV - 0.272
say - 0.202
watch - 0.199
thing - 0.189
much - 0.177
see - 0.164

【讨论】:

【参考方案2】:
from sklearn.feature_extraction.text import TfidfVectorizer
import pandas as pd
vect = TfidfVectorizer()
tfidf_matrix = vect.fit_transform(documents["comments"])
df = pd.DataFrame(tfidf_matrix.toarray(),columns=vect.get_feature_names())
print(df)

sklearn : TFIDF Transformer : How to get tf-idf values of given words in document

【讨论】:

以上是关于如何查看每个单词的 tf-idf 分数的主要内容,如果未能解决你的问题,请参考以下文章

使用相关和随机语料库计算 TF-IDF 单词分数

我如何可视化用于 kmeans 聚类的 tf-idf 向量的数据点?

每个文档/总数中哪 10 个词的 TF-IDF 值最高?

如何标准化 SVM 的 tf-idf 向量?

如何搜索字符串以查看我是不是可以拼写单词

如何使用 TF-IDF 向量选择前 1000 个单词?