如何在 LDA 模型中获取新文档的主题

Posted

技术标签:

【中文标题】如何在 LDA 模型中获取新文档的主题【英文标题】:How to get topic of new document in LDA model 【发布时间】:2020-07-07 04:03:19 【问题描述】:

如何在 LDA 模型中动态传递用户给出的.txt 文档? 我已经尝试了下面的代码,但它不能给出正确的文档主题。我的.txt 的主题与Sports 相关,因此它应该将主题名称命名为 Sports。它给出的输出为:

Score: 0.5569453835487366   - Topic: 0.008*"bike" + 0.005*"game" + 0.005*"team" + 0.004*"run" + 0.004*"virginia"
Score: 0.370819091796875    - Topic: 0.016*"game" + 0.014*"team" + 0.011*"play" + 0.008*"hockey" + 0.008*"player"
Score: 0.061239391565322876  -Topic: 0.010*"card" + 0.010*"window" + 0.008*"driver" + 0.007*"sale" + 0.006*"price"*
data = df.content.values.tolist()
data = [re.sub('\S*@\S*\s?', '', sent) for sent in data]
data = [re.sub('\s+', ' ', sent) for sent in data]
data = [re.sub("\'", "", sent) for sent in data]

def sent_to_words(sentences):
    for sentence in sentences:
        yield(gensim.utils.simple_preprocess(str(sentence), deacc=True))  # deacc=True removes punctuations

data_words = list(sent_to_words(data))
bigram = gensim.models.Phrases(data_words, min_count=5, threshold=100) # higher threshold fewer phrases.
trigram = gensim.models.Phrases(bigram[data_words], threshold=100)  
bigram_mod = gensim.models.phrases.Phraser(bigram)
trigram_mod = gensim.models.phrases.Phraser(trigram)
def remove_stopwords(texts):
    return [[word for word in simple_preprocess(str(doc)) if word not in stop_words] for doc in texts]

def make_bigrams(texts):
    return [bigram_mod[doc] for doc in texts]

def make_trigrams(texts):
    return [trigram_mod[bigram_mod[doc]] for doc in texts]

def lemmatization(texts, allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV']):

    texts_out = []
    for sent in texts:
        doc = nlp(" ".join(sent)) 
        texts_out.append([token.lemma_ for token in doc if token.pos_ in allowed_postags])
    return texts_out
# Remove Stop Words
data_words_nostops = remove_stopwords(data_words)
# Form Bigrams
data_words_bigrams = make_bigrams(data_words_nostops)
data_lemmatized = lemmatization(data_words_bigrams, allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV'])

id2word = gensim.corpora.Dictionary(data_lemmatized)

texts = data_lemmatized

corpus = [id2word.doc2bow(text) for text in texts]
# Build LDA model
lda_model = gensim.models.ldamodel.LdaModel(corpus=corpus,
                                           id2word=id2word,
                                           num_topics=20, 
                                           random_state=100,
                                           update_every=1,
                                           chunksize=100,
                                           passes=10,
                                           alpha='auto',
                                           per_word_topics=True)

#f = io.open("text.txt", mode="r", encoding="utf-8")

p=open("text.txt", "r") #document by the user which is related to sports

if p.mode == 'r':
    content = p.read()

bow_vector = id2word.doc2bow(lemmatization(p))

for index, score in sorted(lda_model[bow_vector], key=lambda tup: -1*tup[1]):
    print("Score: \t Topic: ".format(score, lda_model.print_topic(index, 5)))


【问题讨论】:

【参考方案1】:

经过一番尝试,这对我有用,如果您有不同的意见,请发表评论。

bow_vector = dictionary.doc2bow(preprocess(content))
q= lda_model[bow_vector]

from operator import itemgetter 
res = max(q, key = itemgetter(1))[0] 
res1 = max(q, key = itemgetter(1))[1] 

if (res  == 1 ):
    print("This .txt file is related to Politics/Government, Accuracy:",res1)
elif (res == 2) :
        print("This .txt file is related to sports, Accuracy:",res1)
elif res==3:
        print("This .txt file is related to Computer, Accuracy:",res1)
elif..... (so on)
 else.

【讨论】:

【参考方案2】:

您的所有代码都是正确的,但我认为您对 LDA 建模的期望可能有点偏离。您收到的输出是正确的!

首先,您使用了“主题名称”这个短语; LDA 生成的主题没有名称,并且它们没有与用于训练模型的数据标签的简单映射。这是一个无监督模型,通常你会使用没有标签的数据来训练 LDA。如果您的语料库包含属于 A、B、C、D 类的文档,并且您训练了一个 LDA 模型以输出四个主题 L、M、N、O,则不存在如下映射:

A -> M
B -> L
C -> O
D -> N

其次,要注意输出中标记和主题之间的差异。 LDA 的输出类似于:

主题 1:0.5 - 0.005*"token_13" + 0.003*"token_204" + ...

主题 2:0.07 - 0.01*"token_24" + 0.001*"token_3" + ...

换句话说,每个文档都有属于每个主题的概率。每个主题都由以某种方式加权的每个语料库标记的总和组成,以唯一地定义主题。

查看每个主题中权重最大的标记并将主题解释为一个类是一种诱惑。例如:

# If you have:
topic_1 = 0.1*"dog" + 0.08*"cat" + 0.04*"snake"

# It's tempting to name topic_1 = pets

但这非常难以验证,并且严重依赖于人类的直觉。 LDA 更常见的用法是当您没有标签时,您想要识别哪些文档在语义上彼此相似,而不必确定文档的正确类标签是什么。

【讨论】:

以上是关于如何在 LDA 模型中获取新文档的主题的主要内容,如果未能解决你的问题,请参考以下文章

NLP系列(三)LDA主题模型

如何使用 pyspark(2.1.0) LdA 获取与每个文档相关的主题?

如何从 gensim 打印 LDA 主题模型? Python

LDA 主题模型效果度量

LDA主题建模

主题分布:在python中做LDA后如何查看哪个文档属于哪个主题