有没有办法适当调整这个 sklearn 逻辑回归函数来解释多个自变量和固定效应?
Posted
技术标签:
【中文标题】有没有办法适当调整这个 sklearn 逻辑回归函数来解释多个自变量和固定效应?【英文标题】:Is there a way to suitably adjust this sklearn logistic regression function to account for multiple independent variables and fixed effects? 【发布时间】:2021-11-03 23:00:20 【问题描述】:我想调整下面包含的 LogitRegression 函数以包含其他自变量和固定效应。
以下代码改编自此处提供的答案:how to use sklearn when target variable is a proportion
from sklearn.linear_model import LinearRegression
from random import choices
from string import ascii_lowercase
import numpy as np
import pandas as pd
class LogitRegression(LinearRegression):
def fit(self, x, p):
p = np.asarray(p)
y = np.log(p / (1 - p))
return super().fit(x, y)
def predict(self, x):
y = super().predict(x)
return 1 / (np.exp(-y) + 1)
if __name__ == '__main__':
### 1. Original version with a single independent variable
# generate example data
np.random.seed(42)
n = 100
## orig version provided in the link - single random independent variable
x = np.random.randn(n).reshape(-1,1)
# defining the predictor (dependent) variable (a proportional value between 0 and 1)
noise = 0.1 * np.random.randn(n).reshape(-1, 1)
p = np.tanh(x + noise) / 2 + 0.5
# applying the model - this works
model = LogitRegression()
model.fit(x, p)
### 2. Adding additional independent variables and a fixed effects variable
# creating 3 random independent variables
x1 = np.random.randn(n)
x2 = np.random.randn(n)
x3 = np.random.randn(n)
# a fixed effects variable
cats = ["".join(choices(["France","Norway","Ireland"])) for _ in range(100)]
# combining these into a dataframe
df = pd.DataFrame("x1":x1,"x2":x2,"x3":x3,"countries":cats)
# adding the fixed effects country columns
df = pd.concat([df,pd.get_dummies(df.countries)],axis=1)
print(df)
# ideally I would like to use the independent variables x1,x2,x3 and the fixed
# effects column, countries, from the above df but I'm not sure how best to edit the
# LogitRegression class to account for this. The dependent variable is a proportion.
# x = np.array(df)
model = LogitRegression()
model.fit(x, p)
我希望预测输出的比例介于 0 和 1 之间。我之前尝试过 sklearn 线性回归方法,但这给出了超出预期范围的预测。我也研究过使用 statsmodels OLS 函数,但虽然我可以包含多个自变量,但我找不到包含固定效应的方法。
提前感谢您对此提供的任何帮助,或者如果我可以使用其他合适的方法,请告诉我。
【问题讨论】:
【参考方案1】:在使用数据框将独立和固定效果变量传递给函数时,我设法通过以下小调整解决了这个问题(写出问题的简化示例对我找到答案有很大帮助):
from sklearn.linear_model import LinearRegression
from random import choices
from string import ascii_lowercase
import numpy as np
import pandas as pd
class LogitRegression(LinearRegression):
def fit(self, x, p):
p = np.asarray(p)
y = np.log(p / (1 - p))
return super().fit(x, y)
def predict(self, x):
y = super().predict(x)
return 1 / (np.exp(-y) + 1)
if __name__ == '__main__':
# generate example data
np.random.seed(42)
n = 100
x = np.random.randn(n).reshape(-1,1)
# defining the predictor (dependent) variable (a proportional value between 0 and 1)
noise = 0.1 * np.random.randn(n).reshape(-1, 1)
p = np.tanh(x + noise) / 2 + 0.5
# creating 3 random independent variables
x1 = np.random.randn(n)
x2 = np.random.randn(n)
x3 = np.random.randn(n)
# a fixed effects variable
cats = ["".join(choices(["France","Norway","Ireland"])) for _ in range(100)]
# combining these into a dataframe
df = pd.DataFrame("x1":x1,"x2":x2,"x3":x3,"countries":cats)
# adding the fixed effects country columns
df = pd.concat([df,pd.get_dummies(df.countries)],axis=1)
print(df)
# Using the independent variables x1,x2,x3 and the fixed effects column, countries, from the above df. The dependent variable is a proportion.
# x = np.array(df)
categories = df['countries'].unique()
x = df.loc[:,np.concatenate((["x1","x2","x3"],categories))]
model = LogitRegression()
model.fit(x, p)
【讨论】:
以上是关于有没有办法适当调整这个 sklearn 逻辑回归函数来解释多个自变量和固定效应?的主要内容,如果未能解决你的问题,请参考以下文章