使用 scikit-learn Pipeline 和 GridSearchCV 时出错
Posted
技术标签:
【中文标题】使用 scikit-learn Pipeline 和 GridSearchCV 时出错【英文标题】:Error while using scikit-learn Pipeline and GridSearchCV 【发布时间】:2018-01-27 23:47:14 【问题描述】:我想尝试不同的文本分类管道配置。
我做了这个
pipe = Pipeline([('c_vect', CountVectorizer()),('feat_select', SelectKBest()),
('ridge', RidgeClassifier())])
parameters = 'c_vect__max_features': [10, 50, 100, None],
'feat_select__score_func': [chi2, f_classif, mutual_info_classif, SelectFdr, SelectFwe, SelectFpr],
'ridge__solver': ['sparse_cg', 'lsqr', 'sag'], 'ridge__tol': [1e-2, 1e-3], 'ridge__alpha': [0.01, 0.1, 1]
gs_clf = GridSearchCV(pipe, parameters, n_jobs=5)
gs_clf = gs_clf.fit(clean_train_data, train_labels_list)
但我收到此错误,即使根据此处 SelectKBest 的文档,SelectFdr 应该是可用的功能选择功能之一:http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html
Traceback (most recent call last):
File ".../anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/_parallel_backends.p
y", line 350, in __call__
return self.func(*args, **kwargs)
File ".../anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py", line 1
31, in __call__
return [func(*args, **kwargs) for func, args, kwargs in self.items]
File ".../anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py", line 1
31, in <listcomp>
return [func(*args, **kwargs) for func, args, kwargs in self.items]
File ".../anaconda3/lib/python3.5/site-packages/sklearn/model_selection/_validation.py", line
437, in _fit_and_score
estimator.fit(X_train, y_train, **fit_params)
File ".../anaconda3/lib/python3.5/site-packages/sklearn/pipeline.py", line 257, in fit
Xt, fit_params = self._fit(X, y, **fit_params)
File ".../anaconda3/lib/python3.5/site-packages/sklearn/pipeline.py", line 222, in _fit
**fit_params_steps[name])
File ".../anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/memory.py", line 362
, in __call__
return self.func(*args, **kwargs)
File ".../anaconda3/lib/python3.5/site-packages/sklearn/pipeline.py", line 589, in _fit_trans
form_one
res = transformer.fit_transform(X, y, **fit_params)
File ".../anaconda3/lib/python3.5/site-packages/sklearn/base.py", line 521, in fit_transform
return self.fit(X, y, **fit_params).transform(X)
File ".../anaconda3/lib/python3.5/site-packages/sklearn/feature_selection/base.py", line 76,
in transform
mask = self.get_support()
File ".../anaconda3/lib/python3.5/site-packages/sklearn/feature_selection/base.py", line 47,
in get_support
mask = self._get_support_mask()
File ".../anaconda3/lib/python3.5/site-packages/sklearn/feature_selection/univariate_selectio
n.py", line 503, in _get_support_mask
scores = _clean_nans(self.scores_)
File ".../anaconda3/lib/python3.5/site-packages/sklearn/feature_selection/univariate_selectio
n.py", line 30, in _clean_nans
scores = as_float_array(scores, copy=True)
File ".../anaconda3/lib/python3.5/site-packages/sklearn/utils/validation.py", line 93, in as_
float_array
return X.astype(return_dtype)
TypeError: float() argument must be a string or a number, not 'SelectFdr'
知道为什么会这样吗?
【问题讨论】:
【参考方案1】:SelectFdr、SelectFwe、SelectFpr 是类似于 SelectKBest 的类。它们不是评分功能。
可用的评分函数有given in documentation:
For regression: f_regression, mutual_info_regression For classification: chi2, f_classif, mutual_info_classif
这些类(SelectFdr、SelectFwe、SelectFpr)默认使用评分函数f_classif
。所以你需要从你的参数中删除这些。
如果你想使用这些:你可以像这样改变参数网格:
parameters = 'c_vect__max_features': [10, 50, 100, None],
'feat_select':[SelectKBest(), SelectFdr(), SelectFwe(), SelectFdr()]
'feat_select__score_func': [chi2, f_classif, mutual_info_classif],
'ridge__solver': ['sparse_cg', 'lsqr', 'sag'],
'ridge__tol': [1e-2, 1e-3], 'ridge__alpha': [0.01, 0.1, 1]
注意其中的新参数 "feat_select"。是的,您甚至可以在发送到 GridSearchCV 时更改管道内的转换器对象。希望这可以帮助。如有疑问请追问。
【讨论】:
非常感谢!我不知道你能做到这一点。我还有一个有点不同的问题。 SelectFdr 将尝试减少误报,对吗?有减少假阴性的功能吗?如果没有,有没有办法指定我希望在管道中被视为正面的标签?以上是关于使用 scikit-learn Pipeline 和 GridSearchCV 时出错的主要内容,如果未能解决你的问题,请参考以下文章
使用 scikit-learn Pipeline 和 GridSearchCV 时出错
如何检查 Scikit-Learn Pipeline 所做的更改?
使用 Python Scikit-learn 中的 Pipeline 和 featureUnion 将多个功能合二为一