Logistic回归的多个问题(1.所有CV值具有相同的分数,2.分类报告和准确性不匹配)
Posted
技术标签:
【中文标题】Logistic回归的多个问题(1.所有CV值具有相同的分数,2.分类报告和准确性不匹配)【英文标题】:Multiple problems with Logistic Regression (1. all CV values have the same score, 2. classification report and accuracy doesn't match) 【发布时间】:2021-11-23 01:00:35 【问题描述】:我已经对银行贷款数据实施了逻辑回归。 我已经使用 gridsearchCV 进行超参数调整,并使用多个 kfolds = [3,5,6] 实现了逻辑回归 这是我的代码
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
#from google.colab import files
import io
import warnings
warnings.filterwarnings('ignore')
#uploaded = files.upload()
df = pd.read_csv('CleanedLoanData13Cols.csv')
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler, MinMaxScaler, RobustScaler
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
X = df.drop('loan_status', axis=1, inplace=False)
y = df['loan_status']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 4)
parameters = 'penalty': ['l1', 'l2','elasticnet'],
'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
'solver' : ['liblinear', 'newton-cg', 'lbfgs', 'saga', 'sag'],
'multi_class' : ['auto'],
'max_iter' : [5,15,25]
import warnings
warnings.filterwarnings("ignore")
cv_folds = [3, 5, 6]
s_scaler = StandardScaler()
#m_scaler = MinMaxScaler()
#r_scaler = RobustScaler()
s_scaled_X_train = s_scaler.fit_transform(X_train)
s_scaled_X_test = s_scaler.transform(X_test)
for x in cv_folds:
logmodel = GridSearchCV(LogisticRegression(random_state = 42), parameters, cv = x, scoring = 'accuracy', refit = True)
logmodel.fit(X_train, y_train)
print('The best score with CV =', x, 'is', logmodel.score(X_test, y_test), 'with parameters =\n\n', logmodel.best_params_, '\n\n')
输出:(第一个问题:这对我来说似乎不对!如果我错了请纠正我?)
The best score with CV = 3 is 0.929636746271388 with parameters =
'C': 0.001, 'max_iter': 25, 'multi_class': 'auto', 'penalty': 'l2', 'solver': 'liblinear'
The best score with CV = 5 is 0.929636746271388 with parameters =
'C': 0.001, 'max_iter': 25, 'multi_class': 'auto', 'penalty': 'l2', 'solver': 'liblinear'
The best score with CV = 6 is 0.929636746271388 with parameters =
'C': 0.001, 'max_iter': 25, 'multi_class': 'auto', 'penalty': 'l2', 'solver': 'liblinear'
继续
results = logmodel.cv_results_
print(results.get('params'))
print(results.get('mean_test_score'))
输出:
[0.9084348 nan nan 0.8323203 nan 0.83239873
0.83671225 0.8323203 0.8323203 0.8323203 nan nan
nan nan nan 0.91647373 nan nan
0.8323203 nan 0.902435 0.89474906 0.8520445 0.8323203 and so on
继续:
print(results.get('mean_train_score'))
输出:无
print(logmodel.best_params_)
'C': 0.001, 'max_iter': 25, 'multi_class': 'auto', 'penalty': 'l2', 'solver': 'liblinear'
print(logmodel.best_score_)
输出:0.9226303384209481(我认为这里也有问题,因为这与分类报告中的准确性不匹配)
final_model = logmodel.best_estimator_
s_predictions = final_model.predict(s_scaled_X_test)
from sklearn.metrics import classification_report, confusion_matrix, plot_confusion_matrix
print(classification_report(y_test, s_predictions))
print(confusion_matrix(y_test, s_predictions))
输出:此处的准确度为 0.62,而顶部为 92
precision recall f1-score support
0 0.88 0.64 0.74 9197
1 0.22 0.53 0.31 1732
accuracy 0.62 10929
macro avg 0.55 0.59 0.53 10929
weighted avg 0.77 0.62 0.67 10929
[[5902 3295]
[ 812 920]]
我不知道我哪里出错了?在过去的几个小时里,我一直在努力解决这个问题,但我无法理解我哪里出错了?如果有人对此提出意见,真的会很感激吗?
【问题讨论】:
【参考方案1】:这里的问题是您正在将模型拟合到未缩放的数据X_train, y_train
。
logmodel.fit(X_train, y_train)
然后你试图预测缩放数据s_scaled_X_test
这解释了性能下降。
s_predictions = final_model.predict(s_scaled_X_test)
要解决这个问题,您应该使用缩放数据训练模型,如下所示:
logmodel.fit(s_scaled_X_train, y_train)
【讨论】:
非常感谢,但 CV = [3,5,6] 的最佳分数仍然相同,但这次我得到了 - “0.9385122152072468”。弹出相同的值。有什么解释吗? 这可以通过模型来解释。LogisticRegression
正在解决最小二乘问题。因此,您正在达到此功能的最小值。以上是关于Logistic回归的多个问题(1.所有CV值具有相同的分数,2.分类报告和准确性不匹配)的主要内容,如果未能解决你的问题,请参考以下文章