编辑:K 表示聚类并找到最接近质心的点

Posted

技术标签:

【中文标题】编辑:K 表示聚类并找到最接近质心的点【英文标题】:Edited: K means clustering and finding points closest to the centroid 【发布时间】:2021-07-11 19:08:29 【问题描述】:

我正在尝试根据以下列中的信息将 k 均值应用于集群参与者

Actors              Movies  TvGuest Awards  Shorts  Special LiveShows
Robert De Niro         111      2     6       0        0       0
Jack Nicholson          70      2     4       0        5       0
Marlon Brando           64      2     5       0        0       28
Denzel Washington       25      2     3      24        0       0
Katharine Hepburn       90      1     2       0        0       0
Humphrey Bogart        105      2     1       0        0       52
Meryl Streep            27      2     2       5        0       0
Daniel Day-Lewis        90      2     1       0       71      22
Sidney Poitier          63      2     3       0        0       0
Clark Gable             34      2     4       0        3       0 
Ingrid Bergman          22      2     2       3        0       4
Tom Hanks               82     11     6      21       11      22
#began by scaling my data
X = StandardScaler().fit_transform(data)

#used an elbow plot to find optimal k value  
sum_of_squared_distances = []
K = range(1,15)
for k in K:
    k_means = KMeans(n_clusters=k)
    model = k_means.fit(X)
    sum_of_squared_distances.append(k_means.inertia_)
plt.plot(K, sum_of_squared_distances, 'bx-')
plt.show()

#found yhat for the calculated k value
kmeans = KMeans(n_clusters=3)
model = kmeans.fit(X)
yhat = kmeans.predict(X)

无法弄清楚演员创建散点图。

编辑: 如果质心也是使用绘制的,有没有办法找到最接近质心的演员

centers = kmeans.cluster_centers_(这里的kmeans指的是下面Eric的解决方案)

plt.scatter(centers[:,0],centers[:,1],color='purple',marker='*',label='centroid')

【问题讨论】:

描述每个演员需要多少维度?您可以显示多少个维度才能看到某些东西?你认为你的选择是什么?您可能会受益于在Data Science 上发布您的问题,这将更适合此类问题。 不太确定。感谢您的堆栈交换建议 请注意将verbatim questions 交叉发布到多个SE 站点是not allowed;请仅在您认为您的问题更合适的地方选择一个站点,然后删除另一个站点中的帖子(事实上,目前还不清楚您的问题是什么确切 )。 【参考方案1】:

K 表示 Pandas 中的聚类 - 散点图

#!/usr/bin/python3
# -*- coding: utf-8 -*-
import pandas as pd
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt

df = pd.DataFrame(columns=['Actors', 'Movies', 'TvGuest', "Awards", "Shorts"]) 
df.loc[0]             = ["Robert De Niro",     111,     2,    6,      0] 
df.loc[1]             = ["Jack Nicholson",      70,     2,    4,      0] 
df.loc[2]             = ["Marlon Brando",       64,     4,    5,      0] 
df.loc[3]             = ["Denzel Washington",   25,     2,    3,     24] 
df.loc[4]             = ["Katharine Hepburn",   90,     1,    2,      0] 
df.loc[5]             = ["Humphrey Bogart",     105,    2,    1,      0] 
df.loc[6]             = ["Meryl Streep",        27,     3,    2,      5] 
df.loc[7]             = ["Daniel Day-Lewis",    90,     2,    1,      0] 
df.loc[8]             = ["Sidney Poitier",      63,     2,    3,      0] 
df.loc[9]             = ["Clark Gable",         34,     2,    4,      0] 
df.loc[10]            = ["Ingrid Bergman",      22,     5,    2,      3] 

kmeans = KMeans(n_clusters=4) 
y = kmeans.fit_predict(df[['Movies', 'TvGuest', 'Awards']]) 
df['Cluster'] = y 
plt.scatter(df.Movies, df.TvGuest, c=df.Cluster, alpha = 0.6) 
plt.title('K-means Clustering 2 dimensions and 4 clusters') 
plt.show()

演出:

请注意,二维散点图上显示的数据点是 MoviesTvGuest,但 Kmeans 拟合给出了 3 个变量:MoviesTvGuestAwards。想象一下屏幕上有一个额外的维度,用于计算集群的成员资格。

来源链接:

https://datasciencelab.wordpress.com/2013/12/12/clustering-with-k-means-in-python/

https://datascience.stackexchange.com/questions/48693/perform-k-means-clustering-over-multiple-columns

https://towardsdatascience.com/visualizing-clusters-with-pythons-matplolib-35ae03d87489

【讨论】:

说如果我也绘制质心,有没有办法找出最接近质心的演员 like center = kmeans.cluster_centers_plt.scatter(centers[:,0],centers[:,1],color='purple',marker='*',label='centroid') 您的问题是关于演员分解出的 kmeans 散点图。我回答说,如果您有后续问题正在探索:"what if we do something different in a new context, can we do that?",答案是肯定的,这将是一个新问题。 您好,由于某种原因,我的问题已达到上限。 (只问了 2 个问题)。 我已经修改了问题,如果可以的话

以上是关于编辑:K 表示聚类并找到最接近质心的点的主要内容,如果未能解决你的问题,请参考以下文章

如何使用sklearn找到最接近K的点的索引意味着聚类中心?

K-means 聚类的质心

获取离质心最近的点,scikit-learn?

k-means 使用 word2vec :找到离质心最近的词

K-means

K-means 聚类:根据聚类中数据点的最大大小确定最佳质心数