在 PyTorch 中使用 DataLoaders 进行 k 折交叉验证

Posted

技术标签:

【中文标题】在 PyTorch 中使用 DataLoaders 进行 k 折交叉验证【英文标题】:k-fold cross validation using DataLoaders in PyTorch 【发布时间】:2020-07-08 01:20:57 【问题描述】:

我已将我的训练数据集拆分为 80% 的训练数据和 20% 的验证数据,并创建了如下所示的 DataLoaders。但是我不想限制我的模型的训练。所以我想把我的数据分成 K(也许 5)个折叠并执行交叉验证。但是,我不知道如何在拆分数据集后将它们组合到我的数据加载器中。

train_size = int(0.8 * len(full_dataset))
validation_size = len(full_dataset) - train_size
train_dataset, validation_dataset = random_split(full_dataset, [train_size, validation_size])

full_loader = DataLoader(full_dataset, batch_size=4,sampler = sampler_(full_dataset), pin_memory=True) 
train_loader = DataLoader(train_dataset, batch_size=4, sampler = sampler_(train_dataset))
val_loader = DataLoader(validation_dataset, batch_size=1, sampler = sampler_(validation_dataset))

提前谢谢你!

【问题讨论】:

看看torch.utils.data.ConcatDataset 【参考方案1】:

您可以通过使用 sklearn 和 dataloader 中的 KFOLD 来实现这一点。

import torch
from torch._six import int_classes as _int_classes
from torch import Tensor

from typing import Iterator, Optional, Sequence, List, TypeVar, Generic, Sized

T_co = TypeVar('T_co', covariant=True)

class Sampler(Generic[T_co]):
    r"""Base class for all Samplers.

    Every Sampler subclass has to provide an :meth:`__iter__` method, providing a
    way to iterate over indices of dataset elements, and a :meth:`__len__` method
    that returns the length of the returned iterators.

    .. note:: The :meth:`__len__` method isn't strictly required by
              :class:`~torch.utils.data.DataLoader`, but is expected in any
              calculation involving the length of a :class:`~torch.utils.data.DataLoader`.
    """

    def __init__(self, data_source: Optional[Sized]) -> None:
        pass

    def __iter__(self) -> Iterator[T_co]:
        raise NotImplementedError
        
class SubsetRandomSampler(Sampler[int]):
    r"""Samples elements randomly from a given list of indices, without replacement.

    Args:
        indices (sequence): a sequence of indices
        generator (Generator): Generator used in sampling.
    """
    indices: Sequence[int]

    def __init__(self, indices: Sequence[int], generator=None) -> None:
        self.indices = indices
        self.generator = generator

    def __iter__(self):
        return (self.indices[i] for i in torch.randperm(len(self.indices), generator=self.generator))

    def __len__(self):
        return len(self.indices) 


train_dataset = CustomDataset(data_dir=train_path, mode='train') )
val_dataset = CustomDataset(data_dir=train_path, mode='val') )

    fold = KFold(5, shuffle=True, random_state=random_seed)
    for fold,(tr_idx, val_idx) in enumerate(fold.split(dataset)):
        # initialize the model
        model = smp.FPN(encoder_name='efficientnet-b4', classes=12 , encoder_weights=None, activation='softmax2d')
    
 
     
        loss = BCEDiceLoss()
        optimizer = torch.optim.AdamW([
            'params': model.decoder.parameters(), 'lr': 1e-07/2, 
            'params': model.encoder.parameters(), 'lr': 5e-07,  
        ])
        scheduler = ReduceLROnPlateau(optimizer, factor=0.15, patience=2)
    
  
    
        print('#'*35); print('############ FOLD ',fold+1,' #############'); print('#'*35);
        train_loader = torch.utils.data.DataLoader(dataset=train_dataset, 
                                               batch_size=batch_size,
                                               num_workers=1,
                                               sampler = SubsetRandomSampler(tr_idx)
                                            )
        val_loader = torch.utils.data.DataLoader(dataset=val_dataset, 
                                               batch_size=batch_size,
                                               num_workers=1,
                                               sampler = SubsetRandomSampler(val_idx)
                                            )

所以当你编写DataLoader部分时,使用subsetRandomSampler,这样,dataloader中的采样器总是会随机采样kfold函数生成的train/valid索引。

【讨论】:

【参考方案2】:

我刚刚编写了一个使用数据加载器和数据集的交叉验证函数。 这是我的代码,希望对您有所帮助。

# define a cross validation function
def crossvalid(model=None,criterion=None,optimizer=None,dataset=None,k_fold=5):
    
    train_score = pd.Series()
    val_score = pd.Series()
    
    total_size = len(dataset)
    fraction = 1/k_fold
    seg = int(total_size * fraction)
    # tr:train,val:valid; r:right,l:left;  eg: trrr: right index of right side train subset 
    # index: [trll,trlr],[vall,valr],[trrl,trrr]
    for i in range(k_fold):
        trll = 0
        trlr = i * seg
        vall = trlr
        valr = i * seg + seg
        trrl = valr
        trrr = total_size
        # msg
#         print("train indices: [%d,%d),[%d,%d), test indices: [%d,%d)" 
#               % (trll,trlr,trrl,trrr,vall,valr))
        
        train_left_indices = list(range(trll,trlr))
        train_right_indices = list(range(trrl,trrr))
        
        train_indices = train_left_indices + train_right_indices
        val_indices = list(range(vall,valr))
        
        train_set = torch.utils.data.dataset.Subset(dataset,train_indices)
        val_set = torch.utils.data.dataset.Subset(dataset,val_indices)
        
#         print(len(train_set),len(val_set))
#         print()
        
        train_loader = torch.utils.data.DataLoader(train_set, batch_size=50,
                                          shuffle=True, num_workers=4)
        val_loader = torch.utils.data.DataLoader(val_set, batch_size=50,
                                          shuffle=True, num_workers=4)
        train_acc = train(res_model,criterion,optimizer,train_loader,epoch=1)
        train_score.at[i] = train_acc
        val_acc = valid(res_model,criterion,optimizer,val_loader)
        val_score.at[i] = val_acc
    
    return train_score,val_score
        

train_score,val_score = crossvalid(res_model,criterion,optimizer,dataset=tiny_dataset)


为了直观地了解我们所做的事情的正确性,请参见下面的输出:

train indices: [0,0),[3600,18000), test indices: [0,3600)
14400 3600

train indices: [0,3600),[7200,18000), test indices: [3600,7200)
14400 3600

train indices: [0,7200),[10800,18000), test indices: [7200,10800)
14400 3600

train indices: [0,10800),[14400,18000), test indices: [10800,14400)
14400 3600

train indices: [0,14400),[18000,18000), test indices: [14400,18000)
14400 3600

【讨论】:

很好的例子,谢谢你。我认为将数据集拆分和训练分开会很棒。例如:metrics = k_fold(full_dataset, train_fn, **other_options),其中k_fold 函数将负责数据集拆分并将train_loaderval_loader 传递给train_fn 并将其输出收集到指标中。 train_fn 将负责每个 K 的实际训练和返回指标。【参考方案3】:

看看Cross validation for MNIST dataset with pytorch and sklearn。提问者实施了 kFold 交叉验证。特别看一下他自己的答案(19 年 11 月 23 日 10:34 回答)。他不依赖 random_split() 而是依赖 sklearn.model_selection.KFold 并从那里构造一个 DataSet 并从那里构造一个 Dataloader。

【讨论】:

以上是关于在 PyTorch 中使用 DataLoaders 进行 k 折交叉验证的主要内容,如果未能解决你的问题,请参考以下文章

如何使用pytorch同时迭代两个数据加载器?

如何使用pytorch同时迭代两个数据加载器?

PyTorch-模型建立

PyTorch-模型建立

PyTorch-模型建立

我如何根据我的图像集预测类型? Python / Torchvision / PyTorch