(MNIST - GAN) 鉴别器和生成器误差在第一次迭代后接近于零

Posted

技术标签:

【中文标题】(MNIST - GAN) 鉴别器和生成器误差在第一次迭代后接近于零【英文标题】:(MNIST - GAN) Discriminator and Generator error dropping close to zero after first iteration 【发布时间】:2018-03-25 15:49:22 【问题描述】:

为了深入了解生成对抗网络,我正在尝试基于 Stanford university assignment 使用 tensorflow 自己为 MNIST 数据集实施 GAN。

我仔细检查并研究了我对给定练习的解决方案,并通过了测试。但是,我的发电机只会产生噪音。

我很确定我得到了正确的辅助函数,所有的测试都通过了,我在网上找到了显示完全相同的实现的参考资料。所以它可以在哪里 出错的只是判别器和生成器架构:

def discriminator(x):
    with tf.variable_scope("discriminator"):
        l_1 = leaky_relu(tf.layers.dense(x, 256, activation=None))
        l_2 = leaky_relu(tf.layers.dense(l_1, 256, activation=None))
        logits = tf.layers.dense(l_2, 1, activation=None)
        return logits

def generator(z):
    with tf.variable_scope("generator"):
        l_1 = tf.maximum(tf.layers.dense(z, 1024, activation=None), 0)
        l_2 = tf.maximum(tf.layers.dense(l_1, 1024, activation=None), 0)
        img = tf.tanh(tf.layers.dense(l_2, 784, activation=None))
        return img

我看到生成器和鉴别器的错误在第一次迭代中下降到接近于零。

Iter: 0, D: 1.026, G:0.6514
Iter: 50, D: 2.721e-05, G:5.066e-06
Iter: 100, D: 1.099e-05, G:3.084e-06
Iter: 150, D: 7.546e-06, G:1.946e-06
Iter: 200, D: 3.386e-06, G:1.226e-06
...

学习率较低,例如1e-7,判别器和生成器的错误率衰减缓慢,但最终会降至零,并且只会产生噪声。

Iter: 0, D: 1.722, G:0.6772
Iter: 50, D: 1.704, G:0.665
Iter: 100, D: 1.698, G:0.661
Iter: 150, D: 1.663, G:0.6594
Iter: 200, D: 1.661, G:0.6574
...

我为我的实验启动并运行了张量流图,但到目前为止未能解释任何有意义的东西。 如果您有任何建议或可以推荐一种调试技术,我将很高兴听到。

根据要求,这是我的 GAN - Loss 代码:

def gan_loss(logits_real, logits_fake):
    labels_real = tf.ones_like(logits_real)
    labels_fake = tf.zeros_like(logits_fake)

    d_loss_real = tf.nn.sigmoid_cross_entropy_with_logits(logits=logits_real, labels=labels_real)
    d_loss_fake = tf.nn.sigmoid_cross_entropy_with_logits(logits=logits_fake, labels=labels_fake)
    D_loss = tf.reduce_mean(d_loss_real + d_loss_fake)

    G_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits_fake, labels=labels_fake))
    return D_loss, G_loss

【问题讨论】:

IMO 最有可能的情况是您在生成器的损失函数中存在错误。你能展示你的损失函数代码吗? 我更新了我的问题 测试结果:d_loss 中的最大误差:1.20519e-16 g_loss 中的最大误差:0.0119083 【参考方案1】:

据我了解,您应该更改此模型:

G_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
  logits=logits_fake, labels=labels_fake))

到这里:

G_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
  logits=logits_fake, labels=tf.ones_like(logits_fake)))

【讨论】:

以上是关于(MNIST - GAN) 鉴别器和生成器误差在第一次迭代后接近于零的主要内容,如果未能解决你的问题,请参考以下文章

为啥我在 GAN 的训练鉴别器和生成器中得到 nan 损失值? [复制]

·GAN·

第一节2:GAN经典案例之MNIST手写数字生成

MNIST-GAN笔记一

GAN - 生成器损失减少,但鉴别器假损失在初始下降后增加,为啥?

如何在 Tensorflow 中异步更新 GAN 生成器和判别器?