ValueError:给定的列不是数据框的列
Posted
技术标签:
【中文标题】ValueError:给定的列不是数据框的列【英文标题】:ValueError: A given column is not a column of the dataframe 【发布时间】:2021-04-01 17:28:56 【问题描述】:大家
我正在尝试使用 scikit-learn 创建管道。
基本上,我有一个jupyter-notebook,它使用 pandas 加载数据,拆分数据集来训练和测试模型。
我的问题出现在这一行:clf.fit(X_train, y_train)
你可以在我的 github repo jupyter-notebook 上看到整个代码
日志错误:
----------------------------------------------------------------------
KeyError Traceback (most recent call last)
~/anaconda3/lib/python3.7/site-packages/pandas/core/indexes/base.py in get_loc(self, key, method, tolerance)
2656 try:
-> 2657 return self._engine.get_loc(key)
2658 except KeyError:
pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc()
pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc()
pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()
pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()
KeyError: 'survived'
During handling of the above exception, another exception occurred:
KeyError Traceback (most recent call last)
~/anaconda3/lib/python3.7/site-packages/sklearn/utils/__init__.py in _get_column_indices(X, key)
446 for col in columns:
--> 447 col_idx = all_columns.get_loc(col)
448 if not isinstance(col_idx, numbers.Integral):
~/anaconda3/lib/python3.7/site-packages/pandas/core/indexes/base.py in get_loc(self, key, method, tolerance)
2658 except KeyError:
-> 2659 return self._engine.get_loc(self._maybe_cast_indexer(key))
2660 indexer = self.get_indexer([key], method=method, tolerance=tolerance)
pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc()
pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc()
pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()
pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()
KeyError: 'survived'
The above exception was the direct cause of the following exception:
ValueError Traceback (most recent call last)
<ipython-input-16-17661ab0f723> in <module>
----> 1 clf.fit(X_train, y_train)
2 print("model score: %.3f" % clf.score(X_test, y_test))
~/anaconda3/lib/python3.7/site-packages/sklearn/pipeline.py in fit(self, X, y, **fit_params)
328 """
329 fit_params_steps = self._check_fit_params(**fit_params)
--> 330 Xt = self._fit(X, y, **fit_params_steps)
331 with _print_elapsed_time('Pipeline',
332 self._log_message(len(self.steps) - 1)):
~/anaconda3/lib/python3.7/site-packages/sklearn/pipeline.py in _fit(self, X, y, **fit_params_steps)
294 message_clsname='Pipeline',
295 message=self._log_message(step_idx),
--> 296 **fit_params_steps[name])
297 # Replace the transformer of the step with the fitted
298 # transformer. This is necessary when loading the transformer
~/anaconda3/lib/python3.7/site-packages/joblib/memory.py in __call__(self, *args, **kwargs)
350
351 def __call__(self, *args, **kwargs):
--> 352 return self.func(*args, **kwargs)
353
354 def call_and_shelve(self, *args, **kwargs):
~/anaconda3/lib/python3.7/site-packages/sklearn/pipeline.py in _fit_transform_one(transformer, X, y, weight, message_clsname, message, **fit_params)
738 with _print_elapsed_time(message_clsname, message):
739 if hasattr(transformer, 'fit_transform'):
--> 740 res = transformer.fit_transform(X, y, **fit_params)
741 else:
742 res = transformer.fit(X, y, **fit_params).transform(X)
~/anaconda3/lib/python3.7/site-packages/sklearn/compose/_column_transformer.py in fit_transform(self, X, y)
527 self._validate_transformers()
528 self._validate_column_callables(X)
--> 529 self._validate_remainder(X)
530
531 result = self._fit_transform(X, y, _fit_transform_one)
~/anaconda3/lib/python3.7/site-packages/sklearn/compose/_column_transformer.py in _validate_remainder(self, X)
325 cols = []
326 for columns in self._columns:
--> 327 cols.extend(_get_column_indices(X, columns))
328
329 remaining_idx = sorted(set(range(self._n_features)) - set(cols))
~/anaconda3/lib/python3.7/site-packages/sklearn/utils/__init__.py in _get_column_indices(X, key)
454 raise ValueError(
455 "A given column is not a column of the dataframe"
--> 456 ) from e
457
458 return column_indices
ValueError: A given column is not a column of the dataframe
我在传递数据框之前检查了列是否存在 在训练和测试中拆分。
有人知道如何解决这个问题吗?
提前致谢! 干杯
【问题讨论】:
【参考方案1】:错误来自您在定义X
时从一开始就删除了survived
列。您只在y_train
中检查了它的存在。
简单替换
X= df.drop('survived', axis=1)
通过
X= df
和你的
clf.fit(X_train, y_train)
print("model score: %.3f" % clf.score(X_test, y_test))
返回
model score: 1.000
【讨论】:
嗨,我不明白...因为目标特征仍在 X 中,这可能是训练模型的问题吗?有人知道为什么吗?【参考方案2】:如果您使用的是Kaggle's pipeline,问题可能出在预处理器上:
preprocessor = ColumnTransformer(
transformers=[
('num', numerical_transformer, numerical_cols),
('cat', categorical_transformer, categorical_cols)
])
numerical_cols
和 categorical_cols
应该是特征列表,而不是数据集。
不要在 X_train 上使用你的目标列,它会过度拟合你的模型,它会给你 100% 的准确度,但在生产中将毫无用处。
【讨论】:
以上是关于ValueError:给定的列不是数据框的列的主要内容,如果未能解决你的问题,请参考以下文章