使用 pandas 数据透视表创建子图

Posted

技术标签:

【中文标题】使用 pandas 数据透视表创建子图【英文标题】:Creating subplots with a pandas pivot table 【发布时间】:2019-09-30 20:11:01 【问题描述】:

鉴于下面的数据框,我想创建一个带有两个子图的图形,每个半球一个。 Plts 应该显示针对差异的方法。

df = pd.DataFrame('id':[1,1,1,1,2,2,2,2],
                   'eye':['l','r','l','r','l','r','l','r'],
                   'trial':[1,1,2,2,1,1,2,2],
                   'S':[2,2,3,3,5,5,7,7],
                   'I':[2,2,1,1,4,4,3,3])

df = df.melt(id_vars=['id','eye','trial'],
             value_vars=['S','I'],
             var_name='Hemisphere',
             value_name='Thickness')

df = df.pivot_table(index=['id','eye','Hemisphere'],
                    columns='trial',
                    values='Thickness')

df['diffs'] = df[1] - df[2]
df['means'] = np.mean([df[1], df[2]], axis=0)

df = df.unstack(level=2)

df.plot('means','diffs',subplots=True,kind='scatter')

【问题讨论】:

【参考方案1】:

groupbyaxis=1

axes = df[['diffs', 'means']].groupby(axis=1, level=1).plot.scatter('means', 'diffs')


循环遍历groupby

获得更好的控制

colors = iter('gr')
fig, axes = plt.subplots(2, 1, sharex=True, figsize=(6, 8))
for i, (k, d) in enumerate(df.groupby(axis=1, level=1)):
    d.xs(k, axis=1, level=1).plot.scatter(
        'means', 'diffs', title=k, ax=axes[i], c=next(colors))

fig.tight_layout()

【讨论】:

以上是关于使用 pandas 数据透视表创建子图的主要内容,如果未能解决你的问题,请参考以下文章

Pandas 从数据透视表中绘图

Pandas 数据透视表行小计

如何使用 Pandas 中的数据透视表计算标准差?

具有多索引的 Pandas 子数据透视表和总数据透视表

具有多索引的 Pandas 数据透视表小计

Pandas:排序数据透视表