使用 pandas python 将嵌套的 JSON 解析为多个数据帧
Posted
技术标签:
【中文标题】使用 pandas python 将嵌套的 JSON 解析为多个数据帧【英文标题】:parsing nested JSON into multiple dataframe using pandas python 【发布时间】:2017-03-01 23:00:27 【问题描述】:我有一个如下所示的嵌套 JSON,并想在 python 中解析成多个数据帧..请帮助
"tableName": "cases",
"url": "EndpointVoid",
"tableDataList": [
"_id": "100017252700",
"title": "Test",
"type": "TECH",
"created": "2016-09-06T19:00:17.071Z",
"createdBy": "193164275",
"lastModified": "2016-10-04T21:50:49.539Z",
"lastModifiedBy": "1074113719",
"notes": [
"id": "30",
"title": "Multiple devices",
"type": "INCCL",
"origin": "D",
"componentCode": "PD17A",
"issueCode": "IP321",
"affectedProduct": "134322",
"summary": "testing the json",
"caller":
"email": "katie.slabiak@spps.org",
"phone": "651-744-4522"
,
"id": "50",
"title": "EDU: Multiple Devices - Lightning-to-USB Cable",
"type": "INCCL",
"origin": "D",
"componentCode": "PD17A",
"issueCode": "IP321",
"affectedProduct": "134322",
"summary": "parsing json 2",
"caller":
"email": "testing1@test.org",
"phone": "123-345-1111"
],
"syncCount": 2316,
"repair": [
"id": "D208491610",
"created": "2016-09-06T19:02:48.000Z",
"createdBy": "193164275",
"lastModified": "2016-09-21T12:49:47.000Z"
,
"id": "D208491610"
,
"id": "D208491628",
"created": "2016-09-06T19:03:37.000Z",
"createdBy": "193164275",
"lastModified": "2016-09-21T12:49:47.000Z"
],
"enterpriseStatus": "8"
],
"dateTime": 1475617849,
"primaryKeys": ["$._id"],
"primaryKeyVals": ["100017252700"],
"operation": "UPDATE"
我想解析这个并创建 3 个表/dataframe/csv,如下所示..请帮助..
Output table in this format
【问题讨论】:
我认为您的 json 无效 - 请检查 http://jsonlint.com/ 感谢 jezrael 让我知道..这是复制粘贴错误..我刚刚修复了 JSON 文件.. 【参考方案1】:我认为这不是最好的方法,但我想向您展示可能性。
import pandas as pd
from pandas.io.json import json_normalize
import json
with open('your_sample.json') as f:
dt = json.load(f)
表1
df1 = json_normalize(dt, 'tableDataList', 'dateTime')[['_id', 'title', 'type', 'created', 'createdBy', 'lastModified', 'lastModifiedBy', 'dateTime']]
print df1
_id title type created createdBy \
0 100017252700 Test TECH 2016-09-06T19:00:17.071Z 193164275
lastModified lastModifiedBy dateTime
0 2016-10-04T21:50:49.539Z 1074113719 1475617849
表 2
df2 = json_normalize(dt['tableDataList'], 'notes', '_id')
df2['phone'] = df2['caller'].map(lambda x: x['phone'])
df2['email'] = df2['caller'].map(lambda x: x['email'])
df2 = df2[['_id', 'id', 'title', 'email', 'phone']]
print df2
_id id title \
0 100017252700 30 Multiple devices
1 100017252700 50 EDU: Multiple Devices - Lightning-to-USB Cable
email phone
0 katie.slabiak@spps.org 651-744-4522
1 testing1@test.org 123-345-1111
表 3
df3 = json_normalize(dt['tableDataList'], 'repair', '_id').dropna()
print df3
created createdBy id lastModified \
0 2016-09-06T19:02:48.000Z 193164275 D208491610 2016-09-21T12:49:47.000Z
2 2016-09-06T19:03:37.000Z 193164275 D208491628 2016-09-21T12:49:47.000Z
_id
0 100017252700
2 100017252700
【讨论】:
此代码有效.. 基本上我是从 mongodb 以 JSON 格式导出数据,如果我得到多个案例记录,则代码无法正常工作,有时 JSON 中不会填充几列并再次面临 json 索引不可用的问题...以上是关于使用 pandas python 将嵌套的 JSON 解析为多个数据帧的主要内容,如果未能解决你的问题,请参考以下文章
将 JSON 数组嵌套到 Python Pandas DataFrame
Python Flatten 用 Pandas 将嵌套字典 JSON 相乘