如何使用平面数据表中的嵌套记录构建 JSON 文件?
Posted
技术标签:
【中文标题】如何使用平面数据表中的嵌套记录构建 JSON 文件?【英文标题】:How to build a JSON file with nested records from a flat data table? 【发布时间】:2016-10-09 08:39:46 【问题描述】:我正在寻找一种 Python 技术来从 pandas 数据框中的平面表构建嵌套的 JSON 文件。例如,熊猫数据框架表如何:
teamname member firstname lastname orgname phone mobile
0 1 0 John Doe Anon 916-555-1234
1 1 1 Jane Doe Anon 916-555-4321 916-555-7890
2 2 0 Mickey Moose Moosers 916-555-0000 916-555-1111
3 2 1 Minny Moose Moosers 916-555-2222
获取并导出为如下所示的 JSON:
"teams": [
"teamname": "1",
"members": [
"firstname": "John",
"lastname": "Doe",
"orgname": "Anon",
"phone": "916-555-1234",
"mobile": "",
,
"firstname": "Jane",
"lastname": "Doe",
"orgname": "Anon",
"phone": "916-555-4321",
"mobile": "916-555-7890",
]
,
"teamname": "2",
"members": [
"firstname": "Mickey",
"lastname": "Moose",
"orgname": "Moosers",
"phone": "916-555-0000",
"mobile": "916-555-1111",
,
"firstname": "Minny",
"lastname": "Moose",
"orgname": "Moosers",
"phone": "916-555-2222",
"mobile": "",
]
]
我已经尝试通过创建一个 dicts 的 dict 并转储到 JSON 来做到这一点。这是我当前的代码:
data = pandas.read_excel(inputExcel, sheetname = 'SCAT Teams', encoding = 'utf8')
memberDictTuple = []
for index, row in data.iterrows():
dataRow = row
rowDict = dict(zip(columnList[2:], dataRow[2:]))
teamRowDict = columnList[0]:int(dataRow[0])
memberId = tuple(row[1:2])
memberId = memberId[0]
teamName = tuple(row[0:1])
teamName = teamName[0]
memberDict1 = int(memberId):rowDict
memberDict2 = int(teamName):memberDict1
memberDictTuple.append(memberDict2)
memberDictTuple = tuple(memberDictTuple)
formattedJson = json.dumps(memberDictTuple, indent = 4, sort_keys = True)
print formattedJson
这会产生以下输出。每个项目都嵌套在“团队名称”1 或 2 下的正确级别,但如果记录具有相同的团队名称,则应将它们嵌套在一起。我该如何解决这个问题,以便 teamname 1 和 teamname 2 每个都有嵌套的 2 条记录?
[
"1":
"0":
"email": "john.doe@wildlife.net",
"firstname": "John",
"lastname": "Doe",
"mobile": "none",
"orgname": "Anon",
"phone": "916-555-1234"
,
"1":
"1":
"email": "jane.doe@wildlife.net",
"firstname": "Jane",
"lastname": "Doe",
"mobile": "916-555-7890",
"orgname": "Anon",
"phone": "916-555-4321"
,
"2":
"0":
"email": "mickey.moose@wildlife.net",
"firstname": "Mickey",
"lastname": "Moose",
"mobile": "916-555-1111",
"orgname": "Moosers",
"phone": "916-555-0000"
,
"2":
"1":
"email": "minny.moose@wildlife.net",
"firstname": "Minny",
"lastname": "Moose",
"mobile": "none",
"orgname": "Moosers",
"phone": "916-555-2222"
]
【问题讨论】:
不幸的是,关于解决问题的高级方法是否好/正确/可能/等等的问题在这里没有被考虑在内。也就是说,我认为 dict-of-dicts 方法确实看起来很有希望。您应该使用其他问题来解决剩余的详细信息,但请记住更新您收到的错误消息以及您正在使用的代码,以便它们同步(否则您的问题不可重现)。 我也尝试过调整这个答案:***.com/questions/24374062/…,但仍然没有骰子。 【参考方案1】:根据@root 的一些输入,我使用了不同的策略,并提出了以下代码,这似乎是其中的大部分内容:
import pandas
import json
from collections import defaultdict
inputExcel = 'E:\\teamsMM.xlsx'
exportJson = 'E:\\teamsMM.json'
data = pandas.read_excel(inputExcel, sheetname = 'SCAT Teams', encoding = 'utf8')
grouped = data.groupby(['teamname', 'members']).first()
results = defaultdict(lambda: defaultdict(dict))
for t in grouped.itertuples():
for i, key in enumerate(t.Index):
if i ==0:
nested = results[key]
elif i == len(t.Index) -1:
nested[key] = t
else:
nested = nested[key]
formattedJson = json.dumps(results, indent = 4)
formattedJson = '\n"teams": [\n' + formattedJson +'\n]\n '
parsed = open(exportJson, "w")
parsed.write(formattedJson)
生成的 JSON 文件是这样的:
"teams": [
"1":
"0": [
[
1,
0
],
"John",
"Doe",
"Anon",
"916-555-1234",
"none",
"john.doe@wildlife.net"
],
"1": [
[
1,
1
],
"Jane",
"Doe",
"Anon",
"916-555-4321",
"916-555-7890",
"jane.doe@wildlife.net"
]
,
"2":
"0": [
[
2,
0
],
"Mickey",
"Moose",
"Moosers",
"916-555-0000",
"916-555-1111",
"mickey.moose@wildlife.net"
],
"1": [
[
2,
1
],
"Minny",
"Moose",
"Moosers",
"916-555-2222",
"none",
"minny.moose@wildlife.net"
]
]
这种格式非常接近所需的最终产品。剩下的问题是:删除出现在每个名字上方的冗余数组 [1, 0],并将每个嵌套的标题设为“teamname”:“1”, “成员”:而不是“1”:“0”:
另外,我不知道为什么每条记录都在转换时被剥离其标题。例如为什么字典条目 "firstname":"John" 导出为 "John"。
【讨论】:
请注意,必须从 pandas 0.16.1 升级到 0.18.1 才能使此代码正常工作。【参考方案2】:这是一个有效的解决方案,可以创建所需的 JSON 格式。首先,我按适当的列对数据框进行分组,然后不是为每个列标题/记录对创建字典(并丢失数据顺序),而是将它们创建为元组列表,然后将列表转换为有序字典。为其他所有内容分组的两列创建了另一个 Ordered Dict。列表和有序字典之间的精确分层对于 JSON 转换产生正确的格式是必要的。另请注意,转储为 JSON 时,sort_keys 必须设置为 false,否则您的所有 Ordered Dict 将重新排列为字母顺序。
import pandas
import json
from collections import OrderedDict
inputExcel = 'E:\\teams.xlsx'
exportJson = 'E:\\teams.json'
data = pandas.read_excel(inputExcel, sheetname = 'SCAT Teams', encoding = 'utf8')
# This creates a tuple of column headings for later use matching them with column data
cols = []
columnList = list(data[0:])
for col in columnList:
cols.append(str(col))
columnList = tuple(cols)
#This groups the dataframe by the 'teamname' and 'members' columns
grouped = data.groupby(['teamname', 'members']).first()
#This creates a reference to the index level of the groups
groupnames = data.groupby(["teamname", "members"]).grouper.levels
tm = (groupnames[0])
#Create a list to add team records to at the end of the first 'for' loop
teamsList = []
for teamN in tm:
teamN = int(teamN) #added this in to prevent TypeError: 1 is not JSON serializable
tempList = [] #Create an temporary list to add each record to
for index, row in grouped.iterrows():
dataRow = row
if index[0] == teamN: #Select the record in each row of the grouped dataframe if its index matches the team number
#In order to have the JSON records come out in the same order, I had to first create a list of tuples, then convert to and Ordered Dict
rowDict = ([(columnList[2], dataRow[0]), (columnList[3], dataRow[1]), (columnList[4], dataRow[2]), (columnList[5], dataRow[3]), (columnList[6], dataRow[4]), (columnList[7], dataRow[5])])
rowDict = OrderedDict(rowDict)
tempList.append(rowDict)
#Create another Ordered Dict to keep 'teamname' and the list of members from the temporary list sorted
t = ([('teamname', str(teamN)), ('members', tempList)])
t= OrderedDict(t)
#Append the Ordered Dict to the emepty list of teams created earlier
ListX = t
teamsList.append(ListX)
#Create a final dictionary with a single item: the list of teams
teams = "teams":teamsList
#Dump to JSON format
formattedJson = json.dumps(teams, indent = 1, sort_keys = False) #sort_keys MUST be set to False, or all dictionaries will be alphebetized
formattedJson = formattedJson.replace("NaN", '"NULL"') #"NaN" is the NULL format in pandas dataframes - must be replaced with "NULL" to be a valid JSON file
print formattedJson
#Export to JSON file
parsed = open(exportJson, "w")
parsed.write(formattedJson)
print"\n\nExport to JSON Complete"
【讨论】:
以上是关于如何使用平面数据表中的嵌套记录构建 JSON 文件?的主要内容,如果未能解决你的问题,请参考以下文章
使用 jq 将嵌套的 JSON 文件分解为具有唯一键的平面列表
如何将 JSON 对象的嵌套部分转换为点链式平面 JSON?
Django Rest Framework:将嵌套 json 字段中的数据序列化为普通对象