如何知道一条线是不是与C#中的平面相交?

Posted

技术标签:

【中文标题】如何知道一条线是不是与C#中的平面相交?【英文标题】:How to know if a line intersects a plane in C#?如何知道一条线是否与C#中的平面相交? 【发布时间】:2010-09-07 00:03:36 【问题描述】:

我有两个点(一条线段)和一个矩形。我想知道如何计算线段是否与矩形相交。

【问题讨论】:

【参考方案1】:

来自我的“几何”课程:

public struct Line

    public static Line Empty;

    private PointF p1;
    private PointF p2;

    public Line(PointF p1, PointF p2)
    
        this.p1 = p1;
        this.p2 = p2;
    

    public PointF P1
    
        get  return p1; 
        set  p1 = value; 
    

    public PointF P2
    
        get  return p2; 
        set  p2 = value; 
    

    public float X1
    
        get  return p1.X; 
        set  p1.X = value; 
    

    public float X2
    
        get  return p2.X; 
        set  p2.X = value; 
    

    public float Y1
    
        get  return p1.Y; 
        set  p1.Y = value; 
    

    public float Y2
    
        get  return p2.Y; 
        set  p2.Y = value; 
    


public struct Polygon: IEnumerable<PointF>

    private PointF[] points;

    public Polygon(PointF[] points)
    
        this.points = points;
    

    public PointF[] Points
    
        get  return points; 
        set  points = value; 
    

    public int Length
    
        get  return points.Length; 
    

    public PointF this[int index]
    
        get  return points[index]; 
        set  points[index] = value; 
    

    public static implicit operator PointF[](Polygon polygon)
    
        return polygon.points;
    

    public static implicit operator Polygon(PointF[] points)
    
        return new Polygon(points);
    

    IEnumerator<PointF> IEnumerable<PointF>.GetEnumerator()
    
        return (IEnumerator<PointF>)points.GetEnumerator();
    

    public IEnumerator GetEnumerator()
    
        return points.GetEnumerator();
    


public enum Intersection

    None,
    Tangent,
    Intersection,
    Containment


public static class Geometry


    public static Intersection IntersectionOf(Line line, Polygon polygon)
    
        if (polygon.Length == 0)
        
            return Intersection.None;
        
        if (polygon.Length == 1)
        
            return IntersectionOf(polygon[0], line);
        
        bool tangent = false;
        for (int index = 0; index < polygon.Length; index++)
        
            int index2 = (index + 1)%polygon.Length;
            Intersection intersection = IntersectionOf(line, new Line(polygon[index], polygon[index2]));
            if (intersection == Intersection.Intersection)
            
                return intersection;
            
            if (intersection == Intersection.Tangent)
            
                tangent = true;
            
        
        return tangent ? Intersection.Tangent : IntersectionOf(line.P1, polygon);
    

    public static Intersection IntersectionOf(PointF point, Polygon polygon)
    
        switch (polygon.Length)
        
            case 0:
                return Intersection.None;
            case 1:
                if (polygon[0].X == point.X && polygon[0].Y == point.Y)
                
                    return Intersection.Tangent;
                
                else
                
                    return Intersection.None;
                
            case 2:
                return IntersectionOf(point, new Line(polygon[0], polygon[1]));
        

        int counter = 0;
        int i;
        PointF p1;
        int n = polygon.Length;
        p1 = polygon[0];
        if (point == p1)
        
            return Intersection.Tangent;
        

        for (i = 1; i <= n; i++)
        
            PointF p2 = polygon[i % n];
            if (point == p2)
            
                return Intersection.Tangent;
            
            if (point.Y > Math.Min(p1.Y, p2.Y))
            
                if (point.Y <= Math.Max(p1.Y, p2.Y))
                
                    if (point.X <= Math.Max(p1.X, p2.X))
                    
                        if (p1.Y != p2.Y)
                        
                            double xinters = (point.Y - p1.Y) * (p2.X - p1.X) / (p2.Y - p1.Y) + p1.X;
                            if (p1.X == p2.X || point.X <= xinters)
                                counter++;
                        
                    
                
            
            p1 = p2;
        

        return (counter % 2 == 1) ? Intersection.Containment : Intersection.None;
    

    public static Intersection IntersectionOf(PointF point, Line line)
    
        float bottomY = Math.Min(line.Y1, line.Y2);
        float topY = Math.Max(line.Y1, line.Y2);
        bool heightIsRight = point.Y >= bottomY &&
                             point.Y <= topY;
        //Vertical line, slope is divideByZero error!
        if (line.X1 == line.X2)
        
            if (point.X == line.X1 && heightIsRight)
            
                return Intersection.Tangent;
            
            else
            
                return Intersection.None;
            
        
        float slope = (line.X2 - line.X1)/(line.Y2 - line.Y1);
        bool onLine = (line.Y1 - point.Y) == (slope*(line.X1 - point.X));
        if (onLine && heightIsRight)
        
            return Intersection.Tangent;
        
        else
        
            return Intersection.None;
        
    


【讨论】:

是否所有四个交点方法,即 (Point, Line) 、 (Point, Polygon) 、(Line ,Line) 和 (Line, Polygon) 都必须检查一条线是否与任何给定的 n-polygon 相交?我想知道是否只有 (Line, Polygon) 就足够了? (Line, Polygon) 使用 (Line, Line)。你不需要指出方法。不过,它们对于其他目的很方便!【参考方案2】:

对直线和矩形的每一边执行http://mathworld.wolfram.com/Line-LineIntersection.html。 或:http://mathworld.wolfram.com/Line-PlaneIntersection.html

【讨论】:

【参考方案3】:

因为它丢失了,我只是为了完整性添加它

public static Intersection IntersectionOf(Line line1, Line line2)
    
        //  Fail if either line segment is zero-length.
        if (line1.X1 == line1.X2 && line1.Y1 == line1.Y2 || line2.X1 == line2.X2 && line2.Y1 == line2.Y2)
            return Intersection.None;

        if (line1.X1 == line2.X1 && line1.Y1 == line2.Y1 || line1.X2 == line2.X1 && line1.Y2 == line2.Y1)
            return Intersection.Intersection;
        if (line1.X1 == line2.X2 && line1.Y1 == line2.Y2 || line1.X2 == line2.X2 && line1.Y2 == line2.Y2)
            return Intersection.Intersection;

        //  (1) Translate the system so that point A is on the origin.
        line1.X2 -= line1.X1; line1.Y2 -= line1.Y1;
        line2.X1 -= line1.X1; line2.Y1 -= line1.Y1;
        line2.X2 -= line1.X1; line2.Y2 -= line1.Y1;

        //  Discover the length of segment A-B.
        double distAB = Math.Sqrt(line1.X2 * line1.X2 + line1.Y2 * line1.Y2);

        //  (2) Rotate the system so that point B is on the positive X axis.
        double theCos = line1.X2 / distAB;
        double theSin = line1.Y2 / distAB;
        double newX = line2.X1 * theCos + line2.Y1 * theSin;
        line2.Y1 = line2.Y1 * theCos - line2.X1 * theSin; line2.X1 = newX;
        newX = line2.X2 * theCos + line2.Y2 * theSin;
        line2.Y2 = line2.Y2 * theCos - line2.X2 * theSin; line2.X2 = newX;

        //  Fail if segment C-D doesn't cross line A-B.
        if (line2.Y1 < 0 && line2.Y2 < 0 || line2.Y1 >= 0 && line2.Y2 >= 0)
            return Intersection.None;

        //  (3) Discover the position of the intersection point along line A-B.
        double posAB = line2.X2 + (line2.X1 - line2.X2) * line2.Y2 / (line2.Y2 - line2.Y1);

        //  Fail if segment C-D crosses line A-B outside of segment A-B.
        if (posAB < 0 || posAB > distAB)
            return Intersection.None;

        //  (4) Apply the discovered position to line A-B in the original coordinate system.
        return Intersection.Intersection;
    

注意该方法会旋转线段以避免与方向相关的问题

【讨论】:

【参考方案4】:

使用类:

System.Drawing.Rectangle

方法:

IntersectsWith();

【讨论】:

【参考方案5】:

如果是二维的,那么所有的线都在唯一的平面上。

所以,这是基本的 3-D 几何。你应该可以用一个简单的公式来做到这一点。

查看此页面:

http://local.wasp.uwa.edu.au/~pbourke/geometry/planeline/。

第二种解决方案应该很容易实现,只要将矩形的坐标转换为平面方程即可。

此外,检查您的分母是否不为零(线不相交或包含在平面中)。

【讨论】:

【参考方案6】:

我讨厌浏览 MSDN 文档(它们非常慢而且很奇怪 :-s),但我认为它们应该有类似于 this Java method... 的内容,如果没有,对他们不利! XD(顺便说一句,它适用于段,而不是线条)。

无论如何,你可以看看开源 Java SDK 是如何实现的,也许你会学到一些新的技巧(当我看别人的代码时,我总是很惊讶)

【讨论】:

投了反对票,因为它只是一个链接的答案,并且该链接不再有效【参考方案7】:

是否可以使用简单的线段公式检查矩形每一边的线。

【讨论】:

以上是关于如何知道一条线是不是与C#中的平面相交?的主要内容,如果未能解决你的问题,请参考以下文章

判断一条线与四边形的交点

cad三维制图中如何找到一条线与一个面的交点,如空间斜线与水平标高24M面的交点,如何找到该交点

C# arcengine 获取一条线上的点

直线与矩形相交的特例

如何知道日期范围是不是与Java中的另一个日期范围相交 - Groovy [重复]

线段与非无限平面相交检测