性能 postgresql 9.1.9/9.3.6 与 9.4.1

Posted

技术标签:

【中文标题】性能 postgresql 9.1.9/9.3.6 与 9.4.1【英文标题】:Perfomance postgresql 9.1.9/9.3.6 vs 9.4.1 【发布时间】:2015-03-15 10:00:04 【问题描述】:

我正在比较 9.1.9/9.3.6 和 9.4.1。我认为 9.4.1 的性能应该更好,或者至少不会更差。 但我这里有个问题。 我已经在同一台机器上安装了两个数据库,恢复了相同的转储,使用了 ANALYZE 并且我有 2 个结果,我看到由于某种原因 9.1.9 工作得更快 - 118ms 对 452ms。 我使用 EXPLAIN ANALYZE 检查了相同的 sql 查询(具有相同的 work_mem =8MB 和 shared_buffers = 128MB)。

1) 9.1.9

QUERY PLAN
------------------------------------------------------------------------------------------------------------------------------------------------------------------
 Limit  (cost=6929.93..6929.94 rows=1 width=10) (actual time=99.175..99.178 rows=25 loops=1)
   ->  Sort  (cost=6929.93..6929.94 rows=1 width=10) (actual time=99.175..99.175 rows=25 loops=1)
         Sort Key: (CASE WHEN (p.f_without_price = 1) THEN 0::double precision ELSE p1.price END)
         Sort Method: top-N heapsort  Memory: 26kB
         ->  Nested Loop Anti Join  (cost=133.65..6929.92 rows=1 width=10) (actual time=0.345..97.884 rows=4876 loops=1)
               Join Filter: ((p2.price < p1.price) OR ((p2.price = p1.price) AND (p2.id < p1.id)))
               ->  Nested Loop Left Join  (cost=90.19..6882.40 rows=1 width=64) (actual time=0.344..64.038 rows=4891 loops=1)
                     Filter: (((p.f_without_price = 1) OR (p1.price <> 0::double precision)) AND (CASE WHEN (p.f_without_price = 1) THEN 0::double precision ELSE p1.price END <> 0::double precision))
                     ->  Nested Loop Left Join  (cost=46.75..6834.91 rows=1 width=48) (actual time=0.344..23.213 rows=4889 loops=1)
                           Join Filter: (p.f_assignable = 0)
                           Filter: (((p.f_assignable = 1) AND (pc.product_id IS NOT NULL)) OR ((p.f_assignable = 0) AND (pch.product_id IS NULL)))
                           ->  Nested Loop Left Join  (cost=46.75..6822.71 rows=2 width=58) (actual time=0.344..16.257 rows=4907 loops=1)
                                 Join Filter: (p.f_assignable = 1)
                                 ->  Nested Loop  (cost=46.75..6809.23 rows=2 width=54) (actual time=0.343..8.678 rows=4907 loops=1)
                                       ->  Nested Loop  (cost=0.00..24.84 rows=1 width=58) (actual time=0.017..0.052 rows=2 loops=1)
                                             ->  Nested Loop  (cost=0.00..16.55 rows=1 width=54) (actual time=0.013..0.035 rows=3 loops=1)
                                                   Join Filter: (cs.supplier_id = grps.supplier_id)
                                                   ->  Index Scan using cs_aggregated_groups_pkey on cs_aggregated_groups grps  (cost=0.00..8.27 rows=1 width=50) (actual time=0.006..0.008 rows=3 loops=1)
                                                         Index Cond: (customer_id = 1388)
                                                   ->  Index Scan using index_15 on cs_groups cs  (cost=0.00..8.27 rows=1 width=8) (actual time=0.004..0.007 rows=3 loops=3)
                                                         Index Cond: (customer_id = 1388)
                                                         Filter: (f_primary_group = 1)
                                             ->  Index Scan using index_26 on supplier s  (cost=0.00..8.27 rows=1 width=4) (actual time=0.004..0.004 rows=1 loops=3)
                                                   Index Cond: (id = cs.supplier_id)
                                                   Filter: ((f_active = 1) AND (f_deleted = 0))
                                       ->  Bitmap Heap Scan on product p  (cost=46.75..6754.19 rows=2416 width=12) (actual time=0.401..3.683 rows=2454 loops=2)
                                             Recheck Cond: (supplier_id = s.id)
                                             Filter: ((f_available = 1) AND (f_active = 1) AND (f_deleted = 0) AND ((f_assignable = 1) OR (f_assignable = 0)))
                                             ->  Bitmap Index Scan on index_57  (cost=0.00..46.41 rows=2416 width=0) (actual time=0.320..0.320 rows=3550 loops=2)
                                                   Index Cond: (supplier_id = s.id)
                                 ->  Index Scan using index_49 on product_customer pc  (cost=0.00..6.72 rows=1 width=8) (actual time=0.001..0.001 rows=0 loops=4907)
                                       Index Cond: ((product_id = p.id) AND (customer_id = 1388) AND (customer_id = cs.customer_id))
                           ->  Index Scan using index_63 on product_customer_hidden pch  (cost=0.00..6.08 rows=1 width=8) (actual time=0.001..0.001 rows=0 loops=4907)
                                 Index Cond: ((product_id = p.id) AND (customer_id = 1388) AND (customer_id = cs.customer_id))
                     ->  Bitmap Heap Scan on price p1  (cost=43.44..47.46 rows=1 width=27) (actual time=0.007..0.007 rows=1 loops=4889)
                           Recheck Cond: ((product_id = p.id) AND ((group_id)::text = ANY ((grps.grp_ids)::text[])) AND (amount = 1))
                           Filter: (f_valid = 1)
                           ->  Bitmap Index Scan on price_product_id_group_id_amount_type_id_valid_from_valid_t_key  (cost=0.00..43.44 rows=1 width=0) (actual time=0.006..0.006 rows=1 loops=4889)
                                 Index Cond: ((product_id = p.id) AND ((group_id)::text = ANY ((grps.grp_ids)::text[])) AND (amount = 1))
               ->  Bitmap Heap Scan on price p2  (cost=43.47..47.48 rows=1 width=27) (actual time=0.006..0.006 rows=1 loops=4891)
                     Recheck Cond: ((product_id = p1.product_id) AND ((group_id)::text = ANY ((grps.grp_ids)::text[])) AND (amount = 1) AND (amount = p1.amount))
                     Filter: (f_valid = 1)
                     ->  Bitmap Index Scan on price_product_id_group_id_amount_type_id_valid_from_valid_t_key  (cost=0.00..43.47 rows=1 width=0) (actual time=0.005..0.005 rows=1 loops=4891)
                           Index Cond: ((product_id = p1.product_id) AND ((group_id)::text = ANY ((grps.grp_ids)::text[])) AND (amount = 1) AND (amount = p1.amount))
 Total runtime: 99.297 ms
(45 rows)

2) 9.4.1

QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
 Limit  (cost=503.71..503.72 rows=1 width=10) (actual time=416.762..416.764 rows=25 loops=1)
   ->  Sort  (cost=503.71..503.72 rows=1 width=10) (actual time=416.734..416.734 rows=25 loops=1)
         Sort Key: (CASE WHEN (p.f_without_price = 1) THEN 0::double precision ELSE p1.price END)
         Sort Method: top-N heapsort  Memory: 26kB
         ->  Nested Loop Anti Join  (cost=37.73..503.70 rows=1 width=10) (actual time=0.736..415.337 rows=4876 loops=1)
               ->  Nested Loop Left Join  (cost=37.16..497.90 rows=1 width=64) (actual time=0.697..379.099 rows=4891 loops=1)
                     Join Filter: ((p1.group_id)::text = ANY ((grps.grp_ids)::text[]))
                     Rows Removed by Join Filter: 485609
                     Filter: (((p.f_without_price = 1) OR (p1.price <> 0::double precision)) AND (CASE WHEN (p.f_without_price = 1) THEN 0::double precision ELSE p1.price END <> 0::double precision))
                     Rows Removed by Filter: 13
                     ->  Nested Loop Left Join  (cost=36.61..487.14 rows=1 width=48) (actual time=0.619..24.466 rows=4889 loops=1)
                           Join Filter: ((p.f_assignable = 0) AND (pch.customer_id = cs.customer_id))
                           Filter: (((p.f_assignable = 1) AND (pc.product_id IS NOT NULL)) OR ((p.f_assignable = 0) AND (pch.product_id IS NULL)))
                           Rows Removed by Filter: 18
                           ->  Nested Loop Left Join  (cost=36.33..486.50 rows=2 width=58) (actual time=0.595..17.019 rows=4907 loops=1)
                                 Join Filter: ((p.f_assignable = 1) AND (pc.customer_id = cs.customer_id))
                                 ->  Nested Loop  (cost=36.03..485.82 rows=2 width=54) (actual time=0.573..8.876 rows=4907 loops=1)
                                       ->  Nested Loop  (cost=0.71..18.42 rows=1 width=58) (actual time=0.101..0.122 rows=2 loops=1)
                                             ->  Nested Loop  (cost=0.43..16.49 rows=1 width=12) (actual time=0.078..0.091 rows=2 loops=1)
                                                   ->  Index Scan using index_15 on cs_groups cs  (cost=0.28..8.30 rows=1 width=8) (actual time=0.020..0.024 rows=3 loops=1)
                                                         Index Cond: (customer_id = 1388)
                                                         Filter: (f_primary_group = 1)
                                                   ->  Index Scan using index_26 on supplier s  (cost=0.15..8.17 rows=1 width=4) (actual time=0.006..0.007 rows=1 loops=3)
                                                         Index Cond: (id = cs.supplier_id)
                                                         Filter: ((f_active = 1) AND (f_deleted = 0))
                                                         Rows Removed by Filter: 0
                                             ->  Index Scan using cs_aggregated_groups_pkey on cs_aggregated_groups grps  (cost=0.28..1.92 rows=1 width=50) (actual time=0.004..0.005 rows=1 loops=2)
                                                   Index Cond: ((customer_id = 1388) AND (supplier_id = s.id))
                                       ->  Bitmap Heap Scan on product p  (cost=35.32..454.81 rows=1259 width=12) (actual time=0.456..3.332 rows=2454 loops=2)
                                             Recheck Cond: (supplier_id = s.id)
                                             Filter: ((f_available = 1) AND (f_active = 1) AND (f_deleted = 0))
                                             Rows Removed by Filter: 1096
                                             Heap Blocks: exact=2866
                                             ->  Bitmap Index Scan on index_57  (cost=0.00..35.01 rows=2274 width=0) (actual time=0.300..0.300 rows=3550 loops=2)
                                                   Index Cond: (supplier_id = s.id)
                                 ->  Index Only Scan using index_49 on product_customer pc  (cost=0.29..0.33 rows=1 width=8) (actual time=0.001..0.001 rows=0 loops=4907)
                                       Index Cond: ((product_id = p.id) AND (customer_id = 1388))
                                       Heap Fetches: 0
                           ->  Index Only Scan using index_63 on product_customer_hidden pch  (cost=0.28..0.30 rows=1 width=8) (actual time=0.001..0.001 rows=0 loops=4907)
                                 Index Cond: ((product_id = p.id) AND (customer_id = 1388))
                                 Heap Fetches: 0
                     ->  Index Scan using price_product_id_group_id_amount_type_id_valid_from_valid_t_key on price p1  (cost=0.56..5.36 rows=166 width=27) (actual time=0.006..0.056 rows=100 loops=4889)
                           Index Cond: ((product_id = p.id) AND (amount = 1))
                           Filter: (f_valid = 1)
                           Rows Removed by Filter: 0
               ->  Index Scan using price_product_id_group_id_amount_type_id_valid_from_valid_t_key on price p2  (cost=0.56..5.79 rows=1 width=27) (actual time=0.006..0.006 rows=0 loops=4891)
                     Index Cond: ((product_id = p1.product_id) AND ((group_id)::text = ANY ((grps.grp_ids)::text[])) AND (amount = p1.amount) AND (amount = 1))
                     Filter: ((f_valid = 1) AND ((price < p1.price) OR ((price = p1.price) AND (id < p1.id))))
                     Rows Removed by Filter: 1
 Planning time: 2.975 ms
 Execution time: 416.935 ms
(51 rows)

3) 9.3.6

QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
 Limit  (cost=5705.15..5705.16 rows=1 width=10) (actual time=101.671..101.674 rows=25 loops=1)
   ->  Sort  (cost=5705.15..5705.16 rows=1 width=10) (actual time=101.667..101.669 rows=25 loops=1)
         Sort Key: (CASE WHEN (p.f_without_price = 1) THEN 0::double precision ELSE p1.price END)
         Sort Method: top-N heapsort  Memory: 26kB
         ->  Nested Loop Anti Join  (cost=42.85..5705.14 rows=1 width=10) (actual time=0.505..100.493 rows=4876 loops=1)
               ->  Nested Loop Left Join  (cost=42.29..5662.50 rows=1 width=64) (actual time=0.502..68.448 rows=4891 loops=1)
                     Filter: (((p.f_without_price = 1) OR (p1.price <> 0::double precision)) AND (CASE WHEN (p.f_without_price = 1) THEN 0::double precision ELSE p1.price END <> 0::double precision))
                     Rows Removed by Filter: 13
                     ->  Nested Loop Left Join  (cost=41.72..5612.79 rows=1 width=48) (actual time=0.499..26.178 rows=4889 loops=1)
                           Join Filter: ((p.f_assignable = 0) AND (pch.customer_id = cs.customer_id))
                           Filter: (((p.f_assignable = 1) AND (pc.product_id IS NOT NULL)) OR ((p.f_assignable = 0) AND (pch.product_id IS NULL)))
                           Rows Removed by Filter: 18
                           ->  Nested Loop Left Join  (cost=41.44..5600.55 rows=2 width=58) (actual time=0.497..19.018 rows=4907 loops=1)
                                 Join Filter: ((p.f_assignable = 1) AND (pc.customer_id = cs.customer_id))
                                 ->  Nested Loop  (cost=41.15..5587.11 rows=2 width=54) (actual time=0.495..11.064 rows=4907 loops=1)
                                       ->  Nested Loop  (cost=0.71..23.07 rows=1 width=58) (actual time=0.024..0.049 rows=2 loops=1)
                                             ->  Nested Loop  (cost=0.43..16.49 rows=1 width=12) (actual time=0.017..0.035 rows=2 loops=1)
                                                   ->  Index Scan using index_15 on cs_groups cs  (cost=0.28..8.30 rows=1 width=8) (actual time=0.011..0.016 rows=3 loops=1)
                                                         Index Cond: (customer_id = 1388)
                                                         Filter: (f_primary_group = 1)
                                                   ->  Index Scan using index_26 on supplier s  (cost=0.15..8.17 rows=1 width=4) (actual time=0.003..0.004 rows=1 loops=3)
                                                         Index Cond: (id = cs.supplier_id)
                                                         Filter: ((f_active = 1) AND (f_deleted = 0))
                                                         Rows Removed by Filter: 0
                                             ->  Index Scan using cs_aggregated_groups_pkey on cs_aggregated_groups grps  (cost=0.28..6.58 rows=1 width=50) (actual time=0.004..0.005 rows=1 loops=2)
                                                   Index Cond: ((customer_id = 1388) AND (supplier_id = s.id))
                                       ->  Bitmap Heap Scan on product p  (cost=40.44..5551.89 rows=1215 width=12) (actual time=0.471..4.755 rows=2454 loops=2)
                                             Recheck Cond: (supplier_id = s.id)
                                             Filter: ((f_available = 1) AND (f_active = 1) AND (f_deleted = 0) AND ((f_assignable = 1) OR (f_assignable = 0)))
                                             Rows Removed by Filter: 1096
                                             ->  Bitmap Index Scan on index_57  (cost=0.00..40.14 rows=2235 width=0) (actual time=0.326..0.326 rows=3550 loops=2)
                                                   Index Cond: (supplier_id = s.id)
                                 ->  Index Only Scan using index_49 on product_customer pc  (cost=0.29..6.70 rows=1 width=8) (actual time=0.001..0.001 rows=0 loops=4907)
                                       Index Cond: ((product_id = p.id) AND (customer_id = 1388))
                                       Heap Fetches: 0
                           ->  Index Only Scan using index_63 on product_customer_hidden pch  (cost=0.28..6.10 rows=1 width=8) (actual time=0.001..0.001 rows=0 loops=4907)
                                 Index Cond: ((product_id = p.id) AND (customer_id = 1388))
                                 Heap Fetches: 0
                     ->  Index Scan using price_product_id_group_id_amount_type_id_valid_from_valid_t_key on price p1  (cost=0.56..49.70 rows=1 width=27) (actual time=0.007..0.007 rows=1 loops=4889)
                           Index Cond: ((product_id = p.id) AND ((group_id)::text = ANY ((grps.grp_ids)::text[])) AND (amount = 1))
                           Filter: (f_valid = 1)
                           Rows Removed by Filter: 0
               ->  Index Scan using price_product_id_group_id_amount_type_id_valid_from_valid_t_key on price p2  (cost=0.56..42.63 rows=1 width=27) (actual time=0.005..0.005 rows=0 loops=4891)
                     Index Cond: ((product_id = p1.product_id) AND ((group_id)::text = ANY ((grps.grp_ids)::text[])) AND (amount = p1.amount) AND (amount = 1))
                     Filter: ((f_valid = 1) AND ((price < p1.price) OR ((price = p1.price) AND (id < p1.id))))
                     Rows Removed by Filter: 1
 Total runtime: 101.835 ms
(47 rows)

当然,也许 sql-query 不太好,但我想了解为什么 9.4.1 需要更多时间 x4! 你能帮我做什么吗?

UPD。我安装了 9.3.6 并尝试了相同的查询。结果比 9.4.1 好很多。

【问题讨论】:

请发布整个查询和整个解释。 你删除的导入信息最多:查询计划...... 如果计划太长,请将两个计划发布到explain.depesz.com 并在此处放置链接。没有计划就不可能有效地回答这个问题。 对不起,我已经添加了整个解释。查询要长得多,也足够复杂... 【参考方案1】:

按照@CraigRinger 的建议,我将两者都放入了explain.depesz.com 并并排查看了它们。 slow 9.4 query 和 fast 9.1 query。

计划基本相同,但有两点很突出。第 4 步,即嵌套循环左连接,在 9.4 中比在 9.1 中花费的时间要长得多。两者似乎有区别,9.4的join多了一个过滤器,Join Filter: ((p1.group_id)::text = ANY ((grps.grp_ids)::text[]))。这可能表明两个查询之间存在差异。

然后一切都是一样的,直到第 17 步,9.4 的一切都变成梨形。它对价格表进行一次索引扫描,耗时 273 秒。相反,9.1 进行了一系列更有效的位图扫描。同样,有迹象表明查询可能不同。

我会...

确认您正在运行相同的查询 两个版本的表具有相同的索引 尤其是在价格表上 运行几次查询以确保您不只是对磁盘缓存进行基准测试

没有看到查询或架构,我无能为力。

【讨论】:

我在所有这些数据库上恢复了相同的转储。我检查了查询中的所有表在所有数据库中是否具有相同的索引。我在每个数据库上运行了几次查询。顺便说一句,我已经安装了 9.3.6 并尝试过 - 它的工作原理与 9.1.9 几乎相同,我在帖子中添加了查询计划。 @Alexander:你恢复转储后analyze你的桌子了吗? @a_horse_with_no_name:是的,我做到了。我尝试了 ANALYZE 和 VACUUM ANALYZE 几次,之后又运行了几次查询。 可能是 9.4.1。对错误优化过于敏感,如果我想使用它我必须首先尝试优化查询...

以上是关于性能 postgresql 9.1.9/9.3.6 与 9.4.1的主要内容,如果未能解决你的问题,请参考以下文章

基于Jmeter的PostgreSQL空间性能测试笔记

PostgreSQL 硬件性能调优

PostgreSQL 连接性能

PostgreSql性能测试

技术文档 - PostgreSQL 性能优化之 fsync 参数

Postgresql 生成日期系列(性能)