如何对方程进行蒙特卡罗分析?
Posted
技术标签:
【中文标题】如何对方程进行蒙特卡罗分析?【英文标题】:How can I do a Monte Carlo analysis on an equation? 【发布时间】:2017-09-18 23:38:24 【问题描述】:给定一个依赖于多个变量的函数,每个变量都有一定的概率分布,我如何进行蒙特卡罗分析以获得函数的概率分布。理想情况下,随着参数数量或迭代次数的增加,我希望该解决方案具有高性能。
例如,我为total_time
提供了一个等式,它取决于许多其他参数。
import numpy as np
import matplotlib.pyplot as plt
size = 1000
gym = [30, 30, 35, 35, 35, 35, 35, 35, 40, 40, 40, 45, 45]
left = 5
right = 10
mode = 9
shower = np.random.triangular(left, mode, right, size)
argument = np.random.choice([0, 45], size, p=[0.9, 0.1])
mu = 15
sigma = 5 / 3
dinner = np.random.normal(mu, sigma, size)
mu = 45
sigma = 15/3
work = np.random.normal(mu, sigma, size)
brush_my_teeth = 2
variables = gym, shower, dinner, argument, work, brush_my_teeth
for variable in variables:
plt.figure()
plt.hist(variable)
plt.show()
def total_time(variables):
return np.sum(variables)
健身房
淋浴
晚餐
论据
工作
brush_my_teeth
【问题讨论】:
你试过pymc包吗? 【参考方案1】:您尝试过简单的for
循环吗?首先,定义常量和函数。然后,运行循环 n 次(示例中为 10'000),为变量绘制新的随机值并每次计算函数结果。最后,将所有结果追加到results_dist
,然后绘制它。
import numpy as np
import matplotlib.pyplot as plt
gym = [30, 30, 35, 35, 35, 35, 35, 35, 40, 40, 40, 45, 45]
brush_my_teeth = 2
size = 1000
def total_time(variables):
return np.sum(variables)
results_dist = []
for i in range(10000):
shower = np.random.triangular(left=5, mode=9, right=10, size)
argument = np.random.choice([0, 45], size, p=[0.9, 0.1])
dinner = np.random.normal(mu=15, sigma=5/3, size)
work = np.random.normal(mu=45, sigma=15/3, size)
variables = gym, shower, dinner, argument, work, brush_my_teeth
results_dist.append(total_time(variables))
plt.figure()
plt.hist(results_dist)
plt.show()
【讨论】:
这似乎几乎是正确的,但是,我认为发帖者打算将gym
列表表示一个概率分布,而您似乎还没有正确地从该分布中抽样。要正确采样gym 变量,您需要在for
循环中添加一个额外的行,它会在np.arange(len(gym))
的间隔上生成一个随机整数。然后将该数字用作gym
列表中的随机索引,以便从分布中抽样。【参考方案2】:
现有答案的想法是正确的,但我怀疑您是否想像 nicogen 那样对 size
中的所有值求和。
我假设您选择了一个相对较大的 size
来演示直方图中的形状,而您希望从每个类别中总结一个值。例如,我们想要计算每个活动的一个实例的总和,而不是 1000 个实例。
第一个代码块假定您知道您的函数是一个求和,因此可以使用快速 numpy 求和来计算总和。
import numpy as np
import matplotlib.pyplot as plt
mc_trials = 10000
gym = np.random.choice([30, 30, 35, 35, 35, 35,
35, 35, 40, 40, 40, 45, 45], mc_trials)
brush_my_teeth = np.random.choice([2], mc_trials)
argument = np.random.choice([0, 45], size=mc_trials, p=[0.9, 0.1])
dinner = np.random.normal(15, 5/3, size=mc_trials)
work = np.random.normal(45, 15/3, size=mc_trials)
shower = np.random.triangular(left=5, mode=9, right=10, size=mc_trials)
col_per_trial = np.vstack([gym, brush_my_teeth, argument,
dinner, work, shower])
mc_function_trials = np.sum(col_per_trial,axis=0)
plt.figure()
plt.hist(mc_function_trials,30)
plt.xlim([0,200])
plt.show()
如果你不知道你的函数,或者不能轻易地重铸为一个 numpy element-wise 矩阵运算,你仍然可以像这样循环:
def total_time(variables):
return np.sum(variables)
mc_function_trials = [total_time(col) for col in col_per_trial.T]
您询问有关获得“概率分布”的问题。像我们上面所做的那样获取直方图并不能完全为您做到这一点。它为您提供视觉表示,但不是分布函数。为了得到这个函数,我们需要使用核密度估计。 scikit-learn 有一个罐头 function and example 可以做到这一点。
from sklearn.neighbors import KernelDensity
mc_function_trials = np.array(mc_function_trials)
kde = (KernelDensity(kernel='gaussian', bandwidth=2)
.fit(mc_function_trials[:, np.newaxis]))
density_function = lambda x: np.exp(kde.score_samples(x))
time_values = np.arange(200)[:, np.newaxis]
plt.plot(time_values, density_function(time_values))
现在您可以计算总和小于 100 的概率,例如:
import scipy.integrate as integrate
probability, accuracy = integrate.quad(density_function, 0, 100)
print(probability)
# prints 0.15809
【讨论】:
【参考方案3】:对于这类事情,我建议查看Halton sequences 和类似的准随机低差异序列。 ghalton 包可以很容易地生成确定性但低差异的序列:
import ghalton as gh
sequence = gh.Halton(n) # n is the number of dimensions you want
然后在其他一些答案的基础上,您可以执行以下操作:
values = sequence.get(10000) # generate a bunch of draws of
for vals in values:
# vals will have a single sample of n quasi-random numbers
variables = # add whatever other stuff you need to your quasi-random values
results_dist.append(total_time(variables))
如果您查看一些关于准随机序列的研究论文,就会发现它们在蒙特卡洛积分和采样等应用的收敛方面做得更好。基本上,您可以更均匀地覆盖搜索空间,同时在样本中保持类似随机的属性,这在大多数情况下会导致更快的收敛。
这基本上可以让您在n
维度上获得均匀分布。如果您想在某些维度上有非均匀分布,您可以相应地转换您的均匀分布。我不确定这会对 Halton 序列的低差异属性产生什么影响,但可能值得研究。
【讨论】:
以上是关于如何对方程进行蒙特卡罗分析?的主要内容,如果未能解决你的问题,请参考以下文章
马尔科夫链-蒙特卡罗马尔科夫链-蒙特卡罗方法对先验分布进行抽样