来自正弦样本的离散傅立叶频谱分析的意外结果
Posted
技术标签:
【中文标题】来自正弦样本的离散傅立叶频谱分析的意外结果【英文标题】:Unexpected result from discrete fourier spectrum analysis of sine-sample 【发布时间】:2011-12-30 00:36:17 【问题描述】:http://jvalentino2.tripod.com/dft/index.html
我的代码其实只是上面的一个副本:
package it.vigtig.realtime.fourier;
import java.io.File;
import java.io.IOException;
import javax.sound.sampled.AudioFormat;
import javax.sound.sampled.AudioInputStream;
import javax.sound.sampled.Audiosystem;
import javax.sound.sampled.DataLine;
import javax.sound.sampled.LineUnavailableException;
import javax.sound.sampled.SourceDataLine;
public class Fourier
// Create a global buffer size
private static final int EXTERNAL_BUFFER_SIZE = 128000;
public static void main(String[] args)
/*
* This code is based on the example found at:
* http://www.jsresources.org/examples/SimpleAudioPlayer.java.html
*/
// Get the location of the sound file
File soundFile = new File("res/sin440.wav");
// Load the Audio Input Stream from the file
AudioInputStream audioInputStream = null;
try
audioInputStream = AudioSystem.getAudioInputStream(soundFile);
catch (Exception e)
e.printStackTrace();
System.exit(1);
// Get Audio Format information
AudioFormat audioFormat = audioInputStream.getFormat();
// Handle opening the line
SourceDataLine line = null;
DataLine.Info info = new DataLine.Info(SourceDataLine.class,
audioFormat);
try
line = (SourceDataLine) AudioSystem.getLine(info);
line.open(audioFormat);
catch (LineUnavailableException e)
e.printStackTrace();
System.exit(1);
catch (Exception e)
e.printStackTrace();
System.exit(1);
// Start playing the sound
line.start();
// Write the sound to an array of bytes
int nBytesRead = 0;
byte[] abData = new byte[EXTERNAL_BUFFER_SIZE];
while (nBytesRead != -1)
try
nBytesRead = audioInputStream.read(abData, 0, abData.length);
catch (IOException e)
e.printStackTrace();
if (nBytesRead >= 0)
int nBytesWritten = line.write(abData, 0, nBytesRead);
// close the line
line.drain();
line.close();
// Calculate the sample rate
float sample_rate = audioFormat.getSampleRate();
System.out.println("sample rate = " + sample_rate);
// Calculate the length in seconds of the sample
float T = audioInputStream.getFrameLength()
/ audioFormat.getFrameRate();
System.out
.println("T = " + T + " (length of sampled sound in seconds)");
// Calculate the number of equidistant points in time
int n = (int) (T * sample_rate) / 2;
System.out.println("n = " + n + " (number of equidistant points)");
// Calculate the time interval at each equidistant point
float h = (T / n);
System.out.println("h = " + h
+ " (length of each time interval in seconds)");
float fourierFreq = (sample_rate / ((float) n / 2f));
System.out.println("Fourier frequency is:" + fourierFreq);
// Determine the original Endian encoding format
boolean isBigEndian = audioFormat.isBigEndian();
// this array is the value of the signal at time i*h
int x[] = new int[n];
// convert each pair of byte values from the byte array to an Endian
// value
for (int i = 0; i < n * 2; i += 2)
int b1 = abData[i];
int b2 = abData[i + 1];
if (b1 < 0)
b1 += 0x100;
if (b2 < 0)
b2 += 0x100;
int value;
// Store the data based on the original Endian encoding format
if (!isBigEndian)
value = (b1 << 8) + b2;
else
value = b1 + (b2 << 8);
x[i / 2] = value;
// do the DFT for each value of x sub j and store as f sub j
double maxAmp = 0.0;
double f[] = new double[n / 2];
for (int j = 1; j < n / 2; j++)
double firstSummation = 0;
double secondSummation = 0;
for (int k = 0; k < n; k++)
double twoPInjk = ((2 * Math.PI) / n) * (j * k);
firstSummation += x[k] * Math.cos(twoPInjk);
secondSummation += x[k] * Math.sin(twoPInjk);
f[j] = Math.abs(Math.sqrt(Math.pow(firstSummation, 2)
+ Math.pow(secondSummation, 2)));
double amplitude = 2 * f[j] / n;
double frequency = j * h / T * sample_rate;
if (amplitude > maxAmp)
maxAmp = amplitude;
System.out.println("frequency = " + frequency + ", amp = "
+ amplitude);
// System.out.println(maxAmp + "," + maxFreq + "," + maxIndex);
当我在这个示例上运行它时:http://vigtig.it/sin440.wav
我得到这个结果:
sample rate = 8000.0
T = 0.999875 (length of sampled sound in seconds)
n = 3999 (number of equidistant points)
h = 2.5003127E-4 (length of each time interval in seconds)
Fourier frequency is:4.0010004
frequency = 2.000500202178955, amp = 130.77640790523128
frequency = 4.00100040435791, amp = 168.77080135041228
frequency = 6.001501083374023, amp = 291.55653027302816
frequency = 26.006502151489258, amp = 326.4618004521384
frequency = 40.01000213623047, amp = 2265.126299970012
frequency = 200.05003356933594, amp = 3310.905259926063
frequency = 360.09002685546875, amp = 9452.570363111812
我预计 440 赫兹的响应最高,但事实并非如此。有人可以看到错误或启发我如何误解结果吗?
编辑
查看完字节/整数转换后,我将脚本改为使用 ByteBuffer。它现在似乎按预期工作。这是工作副本:
package it.vigtig.realtime.fourier;
import java.io.File;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.ShortBuffer;
import javax.sound.sampled.AudioFormat;
import javax.sound.sampled.AudioInputStream;
import javax.sound.sampled.AudioSystem;
import javax.sound.sampled.DataLine;
import javax.sound.sampled.LineUnavailableException;
import javax.sound.sampled.SourceDataLine;
public class Fourier
// Create a global buffer size
private static final int EXTERNAL_BUFFER_SIZE = 16000*16;
public static void main(String[] args)
/*
* This code is based on the example found at:
* http://www.jsresources.org/examples/SimpleAudioPlayer.java.html
*/
// Get the location of the sound file
File soundFile = new File("res/saw880.wav");
// Load the Audio Input Stream from the file
AudioInputStream audioInputStream = null;
try
audioInputStream = AudioSystem.getAudioInputStream(soundFile);
catch (Exception e)
e.printStackTrace();
System.exit(1);
// Get Audio Format information
AudioFormat audioFormat = audioInputStream.getFormat();
// Handle opening the line
SourceDataLine line = null;
DataLine.Info info = new DataLine.Info(SourceDataLine.class,
audioFormat);
try
line = (SourceDataLine) AudioSystem.getLine(info);
line.open(audioFormat);
catch (LineUnavailableException e)
e.printStackTrace();
System.exit(1);
catch (Exception e)
e.printStackTrace();
System.exit(1);
// Start playing the sound
line.start();
// Write the sound to an array of bytes
int nBytesRead = 0;
byte[] abData = new byte[EXTERNAL_BUFFER_SIZE];
while (nBytesRead != -1)
try
nBytesRead = audioInputStream.read(abData, 0, abData.length);
catch (IOException e)
e.printStackTrace();
if (nBytesRead >= 0)
int nBytesWritten = line.write(abData, 0, nBytesRead);
// close the line
line.drain();
line.close();
// Calculate the sample rate
float sample_rate = audioFormat.getSampleRate();
System.out.println("sample rate = " + sample_rate);
// Calculate the length in seconds of the sample
float T = audioInputStream.getFrameLength()
/ audioFormat.getFrameRate();
System.out
.println("T = " + T + " (length of sampled sound in seconds)");
// Calculate the number of equidistant points in time
int n = (int) (T * sample_rate) / 2;
System.out.println("n = " + n + " (number of equidistant points)");
// Calculate the time interval at each equidistant point
float h = (T / n);
System.out.println("h = " + h
+ " (length of each time interval in seconds)");
float fourierFreq = (sample_rate / ((float) n / 2f));
System.out.println("Fourier frequency is:" + fourierFreq);
// Determine the original Endian encoding format
boolean isBigEndian = audioFormat.isBigEndian();
// this array is the value of the signal at time i*h
int x[] = new int[n];
ByteBuffer bb = ByteBuffer.allocate(n * 2);
for (int i = 0; i < n * 2; i++)
bb.put(abData[i]);
// do the DFT for each value of x sub j and store as f sub j
double maxAmp = 0.0;
double f[] = new double[n / 2];
for (int j = 1; j < n / 2; j++)
double firstSummation = 0;
double secondSummation = 0;
for (int k = 0; k < n; k++)
double twoPInjk = ((2 * Math.PI) / n) * (j * k);
firstSummation += bb.getShort(k) * Math.cos(twoPInjk);
secondSummation += bb.getShort(k) * Math.sin(twoPInjk);
f[j] = Math.abs(Math.sqrt(Math.pow(firstSummation, 2)
+ Math.pow(secondSummation, 2)));
double amplitude = 2 * f[j] / n;
double frequency = j * h / T * sample_rate;
if (amplitude > maxAmp)
maxAmp = amplitude;
System.out.println("frequency = " + frequency*2 + ", amp = "
+ amplitude);
// System.out.println(maxAmp + "," + maxFreq + "," + maxIndex);
【问题讨论】:
【参考方案1】:字节对到有符号整数的转换似乎是错误的。频率的计算似乎是错误的。也许长度值也很糟糕。
如果输入错误,则无法解释 DFT 结果。尝试绘制 DFT 输入(时域波形)并首先查看是否合适。
【讨论】:
看来这确实是一个糟糕的转换。我改用了 ByteBuffer,现在它似乎可以工作了 :) 谢谢! (我将工作副本添加到问题中)【参考方案2】:您需要在 FFT 之前应用window function,否则您将看到spectral leakage 的效果,这通常会导致幅度谱的拖尾。
【讨论】:
以上是关于来自正弦样本的离散傅立叶频谱分析的意外结果的主要内容,如果未能解决你的问题,请参考以下文章