如何从两个或多个数据框中绘制分组条形图
Posted
技术标签:
【中文标题】如何从两个或多个数据框中绘制分组条形图【英文标题】:How to plot a grouped bar plot from two or more dataframes 【发布时间】:2020-01-28 03:56:44 【问题描述】:我有多个数据框,我想将它们绘制在分组条形图视图中的同一图上。
这是两个非常小的数据框,我想将它们一起绘制在同一个图中。
数据框是:
我想绘制一个像这样的例子:
我试试这个,只画一张图:
fig, ax = plt.subplots()
df1.plot.bar(x='Zona',y='Total_MSP')
df4.plot.bar(x='Zona',y='NumEstCasasFavelas2017',ax=ax)
plt.show()
我也试过这个:
fig, ax = plt.subplots()
df1.plot.bar(x='Zona',y='Total_MSP',ax=ax)
df4.plot.bar(x='Zona',y='NumEstCasasFavelas2017',ax=ax)
plt.show()
结果只是图片中单个数据帧的数据,而不是两个数据帧中的两个数据。请注意,只有两个数据帧的标题出现在同一张图片中,数据仅来自单个孤立的数据帧。
【问题讨论】:
【参考方案1】: 要创建分组条形图,必须将 DataFrame 与pandas.merge
或 pandas.DataFrame.merge
结合使用。
见pandas User Guide: Merge, join, concatenate and compare和SO: Pandas Merging 101。
数据:
import pandas as pd
import matplotlib.pyplot as plt
df1 = pd.DataFrame('Zone': ['C', 'L', 'N', 'O', 'S'],
'Total_MSP': [464245, 3764942, 1877505, 1023160, 3179477])
df2 = pd.DataFrame('Zone': ['C', 'L', 'N', 'O', 'S'],
'CasasFavelas_2017': [463, 4228, 851, 1802, 2060])
合并数据框:
使用pandas.merge
,合并DataFrame。
df = pd.merge(df1, df2, on='Zone')
Zone Total_MSP CasasFavelas_2017
0 C 464245 463
1 L 3764942 4228
2 N 1877505 851
3 O 1023160 1802
4 S 3179477 2060
剧情:
用pandas.DataFrame.plot
绘制DataFrame。
使用对数刻度显示Casas
。
df.plot.bar(x='Zone', logy=True)
plt.xticks(rotation=0)
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
plt.show()
更新:
在提供此答案后,OP 在答案中添加了其他数据。 使用pandas.concat
组合两个以上的DataFrame。
df12 = pd.DataFrame('Zone': ['C', 'L', 'N', 'O', 'S'], 'Total_MSP': [464245, 3764942, 1877505, 1023160, 3179477])
df13 = pd.DataFrame('Zone': ['C', 'L', 'N', 'O', 'S'], 'ValorMedioDollar': [1852.27, 1291.53, 1603.44, 2095.90, 1990.10])
df14 = pd.DataFrame('Zone': ['C', 'L', 'N', 'O', 'S'], 'IDH2010': [0.89, 0.70, 0.79, 0.90, 0.80])
df15 = pd.DataFrame('Zone': ['C', 'L', 'N', 'O', 'S'], 'QtdNovasCasas': [96,1387, 561, 281, 416])
# use concat to combine more than two DataFrames
df = pd.concat([df12.set_index('Zone'), df13.set_index('Zone'), df14.set_index('Zone'), df15.set_index('Zone')], axis=1)
Total_MSP ValorMedioDollar IDH2010 QtdNovasCasas
Zone
C 464245 1852.27 0.89 96
L 3764942 1291.53 0.70 1387
N 1877505 1603.44 0.79 561
O 1023160 2095.90 0.90 281
S 3179477 1990.10 0.80 416
# plot the DataFrame
df.plot.bar(logy=True, figsize=(8, 6))
plt.xticks(rotation=0)
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
plt.show()
添加注释:
不属于原始问题。-
How to plot and annotate a grouped bar chart with 3 bars in each group?
How to plot a dictionary
【讨论】:
【参考方案2】:Graphic with four custom color dataframes and caption
import pandas as pd
df12 = pd.DataFrame('Zone': ['C', 'L', 'N', 'O', 'S'],
'Total_MSP': [464245, 3764942, 1877505, 1023160, 3179477])
df13 = pd.DataFrame('Zone': ['C', 'L', 'N', 'O', 'S'],
'ValorMedioDollar': [1852.27, 1291.53, 1603.44, 2095.90, 1990.10])
df14 = pd.DataFrame('Zone': ['C', 'L', 'N', 'O', 'S'],
'IDH2010': [0.89, 0.70, 0.79, 0.90, 0.80])
df15 = pd.DataFrame('Zone': ['C', 'L', 'N', 'O', 'S'],
'QtdNovasCasas': [96,1387, 561, 281, 416])
df16 = pd.merge(df12, df13, on='Zone')
df16 = pd.merge(df16, df14, on='Zone')
df16 = pd.merge(df16, df15, on='Zone')
fig, ax = plt.subplots(figsize=(50, 20))
#https://xkcd.com/color/rgb/
colors2 = ['#448ee4', '#a9f971','#ceb301','#ffb7ce']
#For all values to be displayed, even though these scales are different, the log scale is used.
df16.plot.bar(x='Zone', logy=True, color=colors2, ax=ax,width=0.5, align = 'center');
#legend
#https://***.com/questions/19125722/adding-a-legend-to-pyplot-in-matplotlib-in-the-most-simple-manner-possible
plt.gca().legend(('Total Resident Population-2017',
'Median Value of square meter-Dollars US',
'HDI- Human Development Index-2010',
'Number of new housing properties-2018'),bbox_to_anchor=(0.87, 0.89) ,fontsize=28)
plt.title('Estimated Resident Population, Average value of square meter, HDI, New housing properties in São Paulo - Brazil',fontsize=40)
plt.xlabel ('Names of the geographical subdivisions of São Paulo',fontsize=40)
plt.ylabel('Log Scale', fontsize=30)
#change the name of month on the x
ax = plt.gca()
names = ['Zone: Center', 'Zone: East', 'Zone: North', 'Zone: West', 'Zone: South']
ax.set_xticklabels(names,fontsize=40)
x = plt.gca().xaxis
plt.rcParams['ytick.labelsize'] = 30
# rotate the tick labels for the x axis
for item in x.get_ticklabels():
item.set_rotation(0)
for spine in plt.gca().spines.values():
spine.set_visible(False)
# remove all the ticks (both axes), and tick labels on the Y axis
plt.tick_params(top='off', bottom='off', left='off', right='off', labelleft='on', labelbottom='on')
# direct label each bar with Y axis values
for p in ax.patches[0:]:
plt.gca().text(p.get_x() + p.get_width()/2, p.get_height()+0.01, str(float(p.get_height())),
ha='center', va='baseline', rotation=0 ,color='black', fontsize=25)
plt.show()
fig.savefig('GraficoMultiplo.jpg')
【讨论】:
以上是关于如何从两个或多个数据框中绘制分组条形图的主要内容,如果未能解决你的问题,请参考以下文章