通过Python中的正则表达式优化在两个列表之间查找匹配子字符串
Posted
技术标签:
【中文标题】通过Python中的正则表达式优化在两个列表之间查找匹配子字符串【英文标题】:Optimizing finding matching substring between the two lists by regex in Python 【发布时间】:2019-08-08 18:04:24 【问题描述】:这是我在包含“短语”的列表中查找子字符串的方法,方法是通过包含“单词”的列表进行搜索,并返回在包含短语的列表中的每个元素中找到的匹配子字符串。
import re
def is_phrase_in(phrase, text):
return re.search(r"\b\b".format(phrase), text, re.IGNORECASE) is not None
list_to_search = ['my', 'name', 'is', 'you', 'your']
list_to_be_searched = ['hello my', 'name is', 'john doe doe is last name', 'how are you', 'what is your name', 'my name is jane doe']
to_be_appended = []
for phrase in list_to_be_searched:
searched = []
for word in list_to_search:
if is_phrase_in(word,phrase) is True:
searched.append(word)
to_be_appended.append(searched)
print(to_be_appended)
# (desired and actual) output
[['my'],
['name', 'is'],
['name', 'is'],
['you'],
['name', 'is', 'your'],
['my', 'name', 'is']]
由于“单词”(或 list_to_search)列表有约 1700 个词,而“短语”(或 list_to_be_searched)列表有约 26561 个,因此完成代码需要 30 多分钟。考虑到 Pythonic 的编码方式和高效的数据结构,我认为我上面的代码没有被实现。 :(
谁能提供一些建议来优化或加快速度?
谢谢!
其实我上面写错了例子。 如果 'list_to_search' 有超过 2 个单词的元素怎么办?
import re
def is_phrase_in(phrase, text):
return re.search(r"\b\b".format(phrase), text, re.IGNORECASE) is not None
list_to_search = ['hello my', 'name', 'is', 'is your name', 'your']
list_to_be_searched = ['hello my', 'name is', 'john doe doe is last name', 'how are you', 'what is your name', 'my name is jane doe']
to_be_appended = []
for phrase in list_to_be_searched:
searched = []
for word in list_to_search:
if is_phrase_in(word,phrase) is True:
searched.append(word)
to_be_appended.append(searched)
print(to_be_appended)
# (desired and actual) output
[['hello my'],
['name', 'is'],
['name', 'is'],
[],
['name', 'is', 'is your name', 'your'],
['name', 'is']]
时间 第一种方法:
%%timeit
def is_phrase_in(phrase, text):
return re.search(r"\b\b".format(phrase), text, re.IGNORECASE) is not None
list_to_search = ['hello my', 'name', 'is', 'is your name', 'your']
list_to_be_searched = ['hello my', 'name is', 'john doe doe is last name', 'how are you', 'what is your name', 'my name is jane doe']
to_be_appended = []
for phrase in list_to_be_searched:
searched = []
for word in list_to_search:
if is_phrase_in(word,phrase) is True:
searched.append(word)
to_be_appended.append(searched)
#43.2 µs ± 346 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
第二种方法(嵌套列表理解和 re.findall)
%%timeit
[[j for j in list_to_search if j in re.findall(r"\b\b".format(j), i)] for i in list_to_be_searched]
#40.3 µs ± 454 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)\
时间确实有所改善,但有更快的方法吗?或者,考虑到它的作用,这项任务在基因上是缓慢的?
【问题讨论】:
【参考方案1】:您可以使用嵌套列表推导:
list_to_search = ['my', 'name', 'is', 'you', 'your']
list_to_be_searched = ['hello my', 'name is', 'john doe doe is last name',
'how are you', 'what is your name', 'my name is jane doe']
[[j for j in list_to_search if j in i.split()] for i in list_to_be_searched]
[['my'],
['name', 'is'],
['name', 'is'],
['you'],
['name', 'is', 'your'],
['my', 'name', 'is']]
【讨论】:
可能先将list_to_search
转换为set
,然后使用re.findall
和\b
而不是split
。【参考方案2】:
虽然最直接/清晰的方法是使用列表推导,但我想看看正则表达式是否可以做得更好。
对list_to_be_searched
中的每个项目使用正则表达式似乎没有任何性能提升。但是将list_to_be_searched
加入一大块文本并将其与由list_to_search
构造的正则表达式模式匹配,性能略有提高:
In [1]: import re
...:
...: list_to_search = ['my', 'name', 'is', 'you', 'your']
...: list_to_be_searched = ['hello my', 'name is', 'john doe doe is last name', 'how are you', 'what is your name', 'my name is jane doe']
...:
...: def simple_method(to_search, to_be_searched):
...: return [[j for j in to_search if j in i.split()] for i in to_be_searched]
...:
...: def regex_method(to_search, to_be_searched):
...: word = re.compile(r'(\b(?:' + r'|'.join(to_search) + r')\b(?:\n)?)')
...: blob = '\n'.join(to_be_searched)
...: phrases = word.findall(blob)
...: return [phrase.split(' ') for phrase in ' '.join(phrases).split('\n ')]
...:
...: def alternate_regex_method(to_search, to_be_searched):
...: word = re.compile(r'(\b(?:' + r'|'.join(to_search) + r')\b(?:\n)?)')
...: phrases = []
...: for item in to_be_searched:
...: phrases.append(word.findall(item))
...: return phrases
...:
In [2]: %timeit -n 100 simple_method(list_to_search, list_to_be_searched)
100 loops, best of 3: 23.1 µs per loop
In [3]: %timeit -n 100 regex_method(list_to_search, list_to_be_searched)
100 loops, best of 3: 18.6 µs per loop
In [4]: %timeit -n 100 alternate_regex_method(list_to_search, list_to_be_searched)
100 loops, best of 3: 23.4 µs per loop
为了了解这在大输入下的表现如何,我使用了 1000 个最常用的英语单词1,一次一个单词作为list_to_search
,以及整个文本来自 Project Gutenberg2 的 David Copperfield 一次取一行为 list_to_be_searched
:
In [5]: book = open('/tmp/copperfield.txt', 'r+')
In [6]: list_to_be_searched = [line for line in book]
In [7]: len(list_to_be_searched)
Out[7]: 38589
In [8]: words = open('/tmp/words.txt', 'r+')
In [9]: list_to_search = [word for word in words]
In [10]: len(list_to_search)
Out[10]: 1000
结果如下:
In [15]: %timeit -n 10 simple_method(list_to_search, list_to_be_searched)
10 loops, best of 3: 31.9 s per loop
In [16]: %timeit -n 10 regex_method(list_to_search, list_to_be_searched)
10 loops, best of 3: 4.28 s per loop
In [17]: %timeit -n 10 alternate_regex_method(list_to_search, list_to_be_searched)
10 loops, best of 3: 4.43 s per loop
因此,如果您热衷于性能,请使用任何一种正则表达式方法。希望有帮助! :)
【讨论】:
感谢您的详细解答!这真的很有帮助。但是“regex_method”能否像多个单词一样捕捉?以上是关于通过Python中的正则表达式优化在两个列表之间查找匹配子字符串的主要内容,如果未能解决你的问题,请参考以下文章