如何使用openCV准确检测这张图片上的棕色/黑色/灰色/白色
Posted
技术标签:
【中文标题】如何使用openCV准确检测这张图片上的棕色/黑色/灰色/白色【英文标题】:How to accurately detect brown/black/grey/white on this picture with openCV 【发布时间】:2021-05-23 00:17:57 【问题描述】:我首先使用 HoughCircles 来找到每个圆圈的中心,但后来我意识到我还需要知道找到的相应圆圈的颜色,所以我尝试了另一种方法(见下文)。
注意:圆圈将随机放置,没有硬编码。
图片如下:
[![在此处输入图片描述][1]][1]
问题:
很难获得准确的 HSV 值以正确检测标题中的颜色,而且图像质量不是最好的。我认为这些冰球的中间圆圈是为了帮助我们区分它们,但由于大多数冰球中有一个浅蓝色圆圈,我不确定它有什么帮助哈哈。
我尝试了什么:
1.
我使用 openCV trackbar 来获得每种颜色的大致下限和上限(除了提到的那些),这真的很难获得。
2.
我在图片上应用蒙版,然后用矩找到圆心。
import cv2
import numpy as np
img = cv2.imread('Photos/lastBoard.png')
frame_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
#red color
lower_values = np.array([0,123,40])
upper_values = np.array([5,255,114])
mask = cv2.inRange(frame_hsv, lower_values, upper_values)
contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
for c in contours:
M = cv2.moments(c)
if M["m00"] != 0:
#####
(x,y),radius = cv2.minEnclosingCircle(c)
center = (int(x),int(y))
radius = int(radius)
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
#this condition is just to tell to detect in that area of the image only
if cX > 500 and radius >8:
cv2.circle(img, (cX, cY), 2, (0,255,0), -1)
cv2.imshow("Image", img)
cv2.waitKey(0)
我需要什么帮助
找到棕色、黑色、白色和灰色真的很难,我的方法似乎不太准确。我有更好的方法吗?非常感谢
【问题讨论】:
【参考方案1】:这是一种可行的方法,它仍然使用HSV
颜色空间,您必须正确获取HSV
范围值。查找目标颜色的 RGB -> HSV
等效值。您绝对可以从一些预处理中受益,以更好地清理您的面具。您还可以实现轮廓过滤器,因为您正在寻找的感兴趣的斑点(圆盘)具有非常不同的属性,例如,纵横比、面积和当然,循环性。我建议以下步骤:
-
为您正在寻找的每个目标冰球获取
HSV
值
定义upper
和lower
范围值
对HSV
图像设置阈值以获得二进制掩码
应用区域过滤器去除小噪音
应用一些形态学 (Dilate+Erode
) 来改进您的目标 blob
获取外轮廓(忽略内轮廓)
将这些轮廓转换为bounding rectangles
获取两个bounding rectangles
属性:aspect ratio
和area
根据阈值属性值过滤边界矩形
让我们看看代码:
# importing cv2 and numpy:
import numpy as np
import cv2
# image path
path = "C://opencvImages//"
fileName = "board.png"
# Reading an image in default mode:
inputImage = cv2.imread(path + fileName)
# Convert the image to HSV:
frame_hsv = cv2.cvtColor(inputImage, cv2.COLOR_BGR2HSV)
# Prepare a dictionary to store the lower and upper
# HSV thresholds:
rangeDictionary =
# brown color
lower_values = np.array([6, 63, 0])
upper_values = np.array([23, 255, 81])
# push it into the dictionary:
rangeDictionary[0] = (lower_values, upper_values, "brown")
# gray color
lower_values = np.array([23, 0, 0])
upper_values = np.array([80, 105, 107])
# push it into the dictionary:
rangeDictionary[1] = (lower_values, upper_values, "gray")
# white color
lower_values = np.array([37, 0, 131])
upper_values = np.array([170, 25, 152])
# push it into the dictionary:
rangeDictionary[2] = (lower_values, upper_values, "white")
# Store results here:
targetRectangles = []
到目前为止,我有目标颜色的 looked up HSV
等价物。我为这些颜色定义了upper
和lower
阈值,并将它们存储在dictionary
中。这个想法是循环遍历这个字典并相应地提取每个颜色范围:
# Loop through the dictionary and locate each circle:
for i in rangeDictionary:
# Get current lower and upper range values:
current_LowRange = rangeDictionary[i][0]
current_UppRange = rangeDictionary[i][1]
# Create the HSV mask
mask = cv2.inRange(frame_hsv, current_LowRange, current_UppRange)
# Run a minimum area filter:
minArea = 800
mask = areaFilter(minArea, mask)
对于第一种颜色,这是未过滤的二进制掩码:
你在这里看到我已经实现了一个areaFilter
。这将消除小于800
的斑点,让我们开始以正确的方式清洁你的面具。此功能在文章末尾定义。接下来是一些morphology
来进一步定义目标blob:
# Pre-process mask:
kernelSize = 3
structuringElement = cv2.getStructuringElement(cv2.MORPH_RECT, (kernelSize, kernelSize))
iterations = 10
mask = cv2.morphologyEx(mask, cv2.MORPH_DILATE, structuringElement, None, None, iterations, cv2.BORDER_REFLECT101)
mask = cv2.morphologyEx(mask, cv2.MORPH_ERODE, structuringElement, None, None, iterations, cv2.BORDER_REFLECT101)
这是过滤后的掩码:
非常好,嗯?没什么特别的,只是一个非常激进的dilation + erosion
连锁店。我想定义漂亮和干净的冰球。根据输入图像的大小,您可能需要调整 iterations
值。让我们继续。接下来的步骤(仍在循环内部)是计算contours
(仅外部的)并将每个contour
近似为polygon
,然后近似为rectangle
:
# Find the big contours/blobs on the filtered image:
contours, hierarchy = cv2.findContours(mask, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
# List to store all the bounding rectangles:
contours_poly = [None] * len(contours)
boundRect = []
# Alright, just look for the outer bounding boxes:
for b, c in enumerate(contours):
if hierarchy[0][b][3] == -1:
# Approximate the contour to a polygon:
contours_poly = cv2.approxPolyDP(c, 3, True)
# Convert the polygon to a bounding rectangle:
boundRect = cv2.boundingRect(contours_poly)
现在我们正在处理bounding rectangles
,操作变得非常简单。让我们获取矩形的尺寸并计算几个参数:aspectRatio
和 area
。使用一些启发式方法,我已经设置了用于过滤矩形的最小阈值:
# Get the dimensions of the bounding rect:
rectX = boundRect[0]
rectY = boundRect[1]
rectWidth = boundRect[2]
rectHeight = boundRect[3]
rectArea = rectWidth * rectHeight
# Calculate the aspect ratio:
aspectRatio = rectWidth / rectHeight
delta = abs(1.0 - aspectRatio)
# Set the min threshold values to identify the
# blob of interest:
minArea = 1000
epsilon = 0.2
# Is this bounding rectangle one the one we
# are looking for?
if rectArea > minArea and delta < epsilon:
# Set a color:
color = (0, 255, 0)
inputCopy = inputImage.copy()
# Draw the current rectangle on a copy of the BGR input:
cv2.rectangle(inputCopy, (int(rectX), int(rectY)),
(int(rectX + rectWidth), int(rectY + rectHeight)), color, 2)
# Store this bounding rectangle:
targetRectangles.append(boundRect)
# Label the current mask:
currentColor = rangeDictionary[i][2]
org = (rectX, rectY -10)
font = cv2.FONT_HERSHEY_SIMPLEX
color = (255, 0, 0)
cv2.putText(inputCopy, currentColor, org, font,
0.5, color, 1, cv2.LINE_AA)
cv2.imwrite(path + "colorMask_"+currentColor+".png", inputCopy)
我还在输入的深层副本上绘制了目标矩形,并绘制了漂亮的文本来识别颜色,查看结果:
“B-b-但是伙计,黑冰球呢?!”如果您一直关注到现在,应该很容易获得额外的面具。这是areaFilter
函数的定义和实现:
def areaFilter(minArea, inputImage):
# Perform an area filter on the binary blobs:
componentsNumber, labeledImage, componentStats, componentCentroids = \
cv2.connectedComponentsWithStats(inputImage, connectivity=4)
# Get the indices/labels of the remaining components based on the area stat
# (skip the background component at index 0)
remainingComponentLabels = [i for i in range(1, componentsNumber) if componentStats[i][4] >= minArea]
# Filter the labeled pixels based on the remaining labels,
# assign pixel intensity to 255 (uint8) for the remaining pixels
filteredImage = np.where(np.isin(labeledImage, remainingComponentLabels) == True, 255, 0).astype('uint8')
return filteredImage
该死的,看看这一切,我可能应该在你的项目报告中的某个地方得到承认。希望这些信息对您有用。
【讨论】:
这是一个很好的答案,非常感谢。我明天将测试解决方案并选择此答案。我还看到你在错误的图像上进行了测试(显示结果的裁剪图像)。我将在第一张图片(世界观)上对其进行测试,哈哈,我想我只需要使用上限/下限即可。 dilate/erode 方法看起来很棒,这将使检测方式更加容易。非常感谢,我明天会回来测试它:) 出于好奇,我用这些值检查了黑色的结果掩码:lower_values = np.array([0,0,0]) upper_values = np.array([179,255,20])圆圈看起来很清晰,但不知何故从未检测到,有什么原因吗?非常感谢 :) (尝试了大局) @codejourney 也许圆的面积低于minArea
中定义的最小阈值。尝试调整此设置。现在,纵横比 (width/height
) 也很重要。圆盘是圆形的,这意味着它们的纵横比必须接近1
(相同的宽度和相同的高度)如果(分段)圆盘太不规则,则纵横比可能会超出(一点点)预期值.调整变量 epsilon
以允许更宽松的阈值。以上是关于如何使用openCV准确检测这张图片上的棕色/黑色/灰色/白色的主要内容,如果未能解决你的问题,请参考以下文章
opencv 中的 SimpleBlobDetector 没有检测到任何东西