你如何使用 LSTM 模型预测未来的预测?
Posted
技术标签:
【中文标题】你如何使用 LSTM 模型预测未来的预测?【英文标题】:How do you predict future predictions with an LSTM model? 【发布时间】:2020-08-24 14:28:33 【问题描述】:您如何使用此模型预测未来价值?我尝试将时间步长窗口更改为比股票数据库更大的值,但我只得到一个错误,说元组索引超出范围。如何预测未来值,而不是在现有数据上测试模型?这是我的代码:
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
dataset_train = pd.read_csv(r'/path', error_bad_lines = False)
training_set = dataset_train.iloc[:, 1:2].values
from sklearn.preprocessing import MinMaxScaler
sc = MinMaxScaler(feature_range = (0, 1))
sc_training_set = sc.fit_transform(training_set)
X_train = []
y_train = []
for i in range (1, 220):
X_train.append(sc_training_set[i-1:i, 0])
y_train.append(sc_training_set[i, 0])
X_train, y_train = np.array(X_train), np.array(y_train)
X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.layers import Dropout
regressor = Sequential()
regressor.add(LSTM(units = 64, return_sequences = True, input_shape = (X_train.shape[1], 1)))
regressor.add(Dropout(0.2))
regressor.add(LSTM(units = 128, return_sequences = True))
regressor.add(Dropout(0.2))
regressor.add(LSTM(units = 256, return_sequences = True))
regressor.add(Dropout(0.2))
regressor.add(LSTM(units = 512, return_sequences = True))
regressor.add(Dropout(0.2))
regressor.add(LSTM(units = 256, return_sequences = True))
regressor.add(Dropout(0.2))
regressor.add(LSTM(units = 128, return_sequences = True))
regressor.add(Dropout(0.2))
regressor.add(LSTM(units = 64))
regressor.add(Dropout(0.2))
regressor.add(Dense(units = 1))
regressor.compile(optimizer = 'adam', loss = 'mean_squared_error', metrics = ['accuracy'])
regressor.fit(X_train, y_train, epochs = 10, batch_size = 32)
dataset_test = []
X_test = []
for i in range(220, 500):
X_test.append(sc_training_set[i-1:i, 0])
X_test = np.array(X_test)
X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))
pred_stock = regressor.predict(X_test)
pred_stock = sc.inverse_transform(pred_stock)
【问题讨论】:
【参考方案1】:这里有一些用于未来预测的伪代码。本质上,您需要不断地将最近的预测添加到您的时间序列中。
您不能只增加时间步长,否则您最终会尝试访问超出范围的索引。
predictions = []
last_x = (the last x value in your data)
while len(predictions) < #_of_predictions_you_want:
p = model.predict(last_x)
predictions.append(p)
last_x = np.roll(x, -1)
last_x[-1] = p
【讨论】:
谢谢!我现在就试试! 我试过了,它给了我一个错误:ValueError: cannot reshape array of size 1 into shape (746,1,1)。我该如何解决?【参考方案2】:也许你可以把这个添加到肖恩的回答中
last_x=np.reshape(len(last_x),1,1)
为了完成,
predictions = []
last_x = (the last x value in your data)
last_x=np.reshape(len(last_x),1,1)
while len(predictions) < #_of_predictions_you_want:
p = model.predict(last_x)
predictions.append(p)
last_x = np.roll(x, -1)
last_x[-1] = p
last_x=np.reshape(len(last_x),1,1)
【讨论】:
以上是关于你如何使用 LSTM 模型预测未来的预测?的主要内容,如果未能解决你的问题,请参考以下文章