Tensorflow (.pb) 格式到 Keras (.h5)
Posted
技术标签:
【中文标题】Tensorflow (.pb) 格式到 Keras (.h5)【英文标题】:Tensorflow (.pb) format to Keras (.h5) 【发布时间】:2020-04-10 00:59:31 【问题描述】:我正在尝试将 Tensorflow (.pb) 格式的模型转换为 Keras (.h5) 格式,以查看事后注意可视化。 我试过下面的代码。
file_pb = "/test.pb"
file_h5 = "/test.h5"
loaded_model = tf.keras.models.load_model(file_pb)
tf.keras.models.save_keras_model(loaded_model, file_h5)
loaded_model_from_h5 = tf.keras.models.load_model(file_h5)
谁能帮我解决这个问题?这甚至可能吗?
【问题讨论】:
【参考方案1】:在最新的Tensorflow Version (2.2)
中,当我们Save
模型使用tf.keras.models.save_model
时,模型将不仅仅是pb file
中的Saved
,而是保存在一个文件夹中,其中包含Variables
文件夹和Assets
文件夹,另外还有saved_model.pb
文件,如下截图所示:
例如,如果Model
是Saved
,名称为"Model"
,我们必须使用文件夹名称“Model”而不是Load
987654335@,如下图:
loaded_model = tf.keras.models.load_model('Model')
而不是
loaded_model = tf.keras.models.load_model('saved_model.pb')
您可以做的另一项更改是替换
tf.keras.models.save_keras_model
与
tf.keras.models.save_model
将模型从Tensorflow Saved Model Format (pb)
转换为Keras Saved Model Format (h5)
的完整工作代码如下所示:
import os
import tensorflow as tf
from tensorflow.keras.preprocessing import image
New_Model = tf.keras.models.load_model('Dogs_Vs_Cats_Model') # Loading the Tensorflow Saved Model (PB)
print(New_Model.summary())
New_Model.summary
命令的输出是:
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 148, 148, 32) 896
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 74, 74, 32) 0
_________________________________________________________________
conv2d_1 (Conv2D) (None, 72, 72, 64) 18496
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 36, 36, 64) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 34, 34, 128) 73856
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 17, 17, 128) 0
_________________________________________________________________
conv2d_3 (Conv2D) (None, 15, 15, 128) 147584
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 7, 7, 128) 0
_________________________________________________________________
flatten (Flatten) (None, 6272) 0
_________________________________________________________________
dense (Dense) (None, 512) 3211776
_________________________________________________________________
dense_1 (Dense) (None, 1) 513
=================================================================
Total params: 3,453,121
Trainable params: 3,453,121
Non-trainable params: 0
_________________________________________________________________
None
继续代码:
# Saving the Model in H5 Format and Loading it (to check if it is same as PB Format)
tf.keras.models.save_model(New_Model, 'New_Model.h5') # Saving the Model in H5 Format
loaded_model_from_h5 = tf.keras.models.load_model('New_Model.h5') # Loading the H5 Saved Model
print(loaded_model_from_h5.summary())
命令的输出,print(loaded_model_from_h5.summary())
如下所示:
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 148, 148, 32) 896
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 74, 74, 32) 0
_________________________________________________________________
conv2d_1 (Conv2D) (None, 72, 72, 64) 18496
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 36, 36, 64) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 34, 34, 128) 73856
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 17, 17, 128) 0
_________________________________________________________________
conv2d_3 (Conv2D) (None, 15, 15, 128) 147584
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 7, 7, 128) 0
_________________________________________________________________
flatten (Flatten) (None, 6272) 0
_________________________________________________________________
dense (Dense) (None, 512) 3211776
_________________________________________________________________
dense_1 (Dense) (None, 1) 513
=================================================================
Total params: 3,453,121
Trainable params: 3,453,121
Non-trainable params: 0
_________________________________________________________________
从上面Models
的Summary
可以看出,Models
都是一样的。
【讨论】:
我在保存模型时遇到了这个错误 AttributeError: '_UserObject' object has no attribute '_is_graph_network' 这就像一个梦想成真的约定,但我得到了这个错误:'_UserObject'对象没有属性'summary'。我在 Tensorflow 版本 (2.3) 上运行。 我得到了这个 AttributeError: 'AutoTrackable' object has no attribute '_is_graph_network' 我收到此错误:AttributeError: 'AutoTrackable' object has no attribute 'Summary'?以上是关于Tensorflow (.pb) 格式到 Keras (.h5)的主要内容,如果未能解决你的问题,请参考以下文章
Tensorflow (.pb) 格式到 Keras (.h5)
TensorFlow 自定义模型导出:将 .ckpt 格式转化为 .pb 格式