如何在 keras 中拥有并行卷积层?
Posted
技术标签:
【中文标题】如何在 keras 中拥有并行卷积层?【英文标题】:How to have parallel convolutional layers in keras? 【发布时间】:2017-08-26 09:07:40 【问题描述】:我对神经网络和 keras 有点陌生。我有一些大小为 6*7 的图像,过滤器的大小为 15。我想有几个过滤器并在每个过滤器上分别训练一个卷积层,然后将它们组合起来。我在这里看过一个例子:
model = Sequential()
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1],
border_mode='valid',
input_shape=input_shape))
model.add(Activation('relu'))
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=pool_size))
model.add(Dropout(0.25))
model.add(Flatten(input_shape=input_shape))
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes))
model.add(Activation('tanh'))
此模型适用于一个过滤器。谁能给我一些关于如何修改模型以使用并行卷积层的提示。
谢谢
【问题讨论】:
【参考方案1】:这是在 keras 版本 2 中设计并行卷积和子采样层网络的示例。我希望这可以解决您的问题。
rows, cols = 100, 15
def create_convnet(img_path='network_image.png'):
input_shape = Input(shape=(rows, cols, 1))
tower_1 = Conv2D(20, (100, 5), padding='same', activation='relu')(input_shape)
tower_1 = MaxPooling2D((1, 11), strides=(1, 1), padding='same')(tower_1)
tower_2 = Conv2D(20, (100, 7), padding='same', activation='relu')(input_shape)
tower_2 = MaxPooling2D((1, 9), strides=(1, 1), padding='same')(tower_2)
tower_3 = Conv2D(20, (100, 10), padding='same', activation='relu')(input_shape)
tower_3 = MaxPooling2D((1, 6), strides=(1, 1), padding='same')(tower_3)
merged = keras.layers.concatenate([tower_1, tower_2, tower_3], axis=1)
merged = Flatten()(merged)
out = Dense(200, activation='relu')(merged)
out = Dense(num_classes, activation='softmax')(out)
model = Model(input_shape, out)
plot_model(model, to_file=img_path)
return model
这个网络的图像看起来像
【讨论】:
这正是我想要的。如果你仍然活跃,你可以在这里回复几个问题 CNN 中的特征提取究竟是如何实现的? 嘿@durjoy 你能看看这个问题***.com/q/61734815/10665645【参考方案2】:我的方法是创建其他模型来定义所有并行卷积和拉动操作,并将所有并行结果张量连接到单个输出张量。现在您可以在顺序模型中添加此并行模型图,就像层一样。这是我的解决方案,希望能解决您的问题。
# variable initialization
from keras import Input, Model, Sequential
from keras.layers import Conv2D, MaxPooling2D, Concatenate, Activation, Dropout, Flatten, Dense
nb_filters =100
kernel_size=
kernel_size[0]= [3,3]
kernel_size[1]= [4,4]
kernel_size[2]= [5,5]
input_shape=(32, 32, 3)
pool_size = (2,2)
nb_classes =2
no_parallel_filters = 3
# create seperate model graph for parallel processing with different filter sizes
# apply 'same' padding so that ll produce o/p tensor of same size for concatination
# cancat all paralle output
inp = Input(shape=input_shape)
convs = []
for k_no in range(len(kernel_size)):
conv = Conv2D(nb_filters, kernel_size[k_no][0], kernel_size[k_no][1],
border_mode='same',
activation='relu',
input_shape=input_shape)(inp)
pool = MaxPooling2D(pool_size=pool_size)(conv)
convs.append(pool)
if len(kernel_size) > 1:
out = Concatenate()(convs)
else:
out = convs[0]
conv_model = Model(input=inp, output=out)
# add created model grapg in sequential model
model = Sequential()
model.add(conv_model) # add model just like layer
model.add(Conv2D(nb_filters, kernel_size[1][0], kernel_size[1][0]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=pool_size))
model.add(Dropout(0.25))
model.add(Flatten(input_shape=input_shape))
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes))
model.add(Activation('tanh'))
更多信息请参考类似问题:Combining the outputs of multiple models into one model
【讨论】:
我认为这很有用。我一定会尝试的。只是一个简单的问题,Model 是另一个包含顺序模型的类吗?输出应该是什么? 不,它不是顺序的。顺序模型定义了简单的网络架构,它接受单个输入并产生单个输出并按顺序传递到下一层,张量的维度取决于模型中的层。要定义复杂的架构,您需要使用其他功能 API 的模型。您可以在 keras 文档keras.io/getting-started/functional-api-guide 中找到更多详细信息以上是关于如何在 keras 中拥有并行卷积层?的主要内容,如果未能解决你的问题,请参考以下文章
Python keras如何将卷积层转换为lstm层后的输入大小
如何使用 gpu 并行训练 tensorflow.keras 模型? TensorFlow 版本 2.5.0