如何在 python 中使用 AutoReg 预测时间序列

Posted

技术标签:

【中文标题】如何在 python 中使用 AutoReg 预测时间序列【英文标题】:How to forecast time series using AutoReg in python 【发布时间】:2020-12-05 06:39:40 【问题描述】:

我正在尝试仅使用自动回归算法来构建老式模型。我发现statsmodel 包中有它的实现。我已经阅读了文档,据我所知,它应该像 ARIMA 一样工作。所以,这是我的代码:

import statsmodels.api as sm
model = sm.tsa.AutoReg(df_train.beer, 12).fit()

当我想预测新值时,我会尝试遵循文档:

y_pred = model.predict(start=df_test.index.min(), end=df_test.index.max())
# or
y_pred = model.predict(start=100, end=1000)

两者都返回一个 NaN 列表。

此外,当我输入 model.predict(0, df_train.size - 1) 时,它会预测实际值,但 model.predict(0, df_train.size) 会预测 NaN 列表。

我做错了吗?


P.S. 我知道有 ARIMA、ARMA 或 SARIMAX 算法可以用作基本的自动回归。但我确实需要 AutoReg。

【问题讨论】:

【参考方案1】:

您可以使用此代码进行预测

model = sm.tsa.AutoReg(df_train.beer, 12).fit()
y_pred = model.model.predict(model.params, start=df_test.index.min(), end=df_test.index.max())

【讨论】:

【参考方案2】:

我们可以通过以下几种方式进行预测:

    直接使用predict()函数和 通过使用AR(p)过程的定义和AutoReg()学习的参数:这将有助于短期预测,我们将看到。

让我们从statsmodels 的示例数据集开始,数据如下所示:

import statsmodels.api as sm
data = sm.datasets.sunspots.load_pandas().data['SUNACTIVITY']
plt.plot(range(len(data)), data)

让我们拟合一个AR(p)过程来对时间序列进行建模,并使用偏自相关图来找到顺序p,如下所示

从上面可以看出,前几个 PACF 值仍然很重要,我们将 p=10 用于 AR(p)

让我们将数据划分为训练和验证(测试)数据集,并使用训练数据拟合 10 阶自回归模型:

from statsmodels.tsa.ar_model import AutoReg
n = len(data)
ntrain = int(n*0.9)
ntest = n - ntrain
lag = 10
res = AutoReg(data[:ntrain], lags = lag).fit()

现在,使用predict() 函数来预测与保留数据集对应的所有值:

preds = res.model.predict(res.params, start=n-ntest, end=n)

请注意,我们可以使用训练模型中的参数得到完全相同的预测,如下所示:

x = data[ntrain-lag:ntrain].values
preds1 = []
for t in range(ntrain, n):
    pred = res.params[0] + np.sum(res.params[1:]*x[::-1])
    x[:lag-1], x[lag-1] = x[-(lag-1):], pred
    preds1.append(pred)

请注意,这种方式生成的预测值与上面使用predict() 函数获得的预测值相同。

np.allclose(preds.values, np.array(preds1))
# True

现在,让我们绘制测试数据的预测值:

可以看出,对于长期预测,预测质量不是很好(因为预测值用于长期预测)。

现在让我们转而进行短期预测,并使用数据集中最后的 lag 点来预测下一个值,如下一个代码 sn-p 所示。

preds = []
for t in range(ntrain, n):
    pred = res.params[0] + np.sum(res.params[1:]*data[t-lag:t].values[::-1])
    preds.append(pred)

从下图中可以看出,短期预测效果更好:

【讨论】:

以上是关于如何在 python 中使用 AutoReg 预测时间序列的主要内容,如果未能解决你的问题,请参考以下文章

statsmodels 笔记:自回归模型 AutoReg

时间序列分析:时间序列基本概念

为啥 ImportError: cannot import name 'AutoReg' from 'statsmodels.tsa.ar_model' 发生?

如何在python中使用保存模型进行预测

如何在 Python 中使用 Affinity Propagation 进行预测

如何在 Python 中使用随机森林回归器预测未来的数字