傅里叶域中的去模糊算法

Posted

技术标签:

【中文标题】傅里叶域中的去模糊算法【英文标题】:Deblurring algorithm in the Fourier domain 【发布时间】:2012-11-20 11:01:04 【问题描述】:

我正在尝试在傅里叶变换域中实现反卷积算法。我自己在 Matlab 中有一个工作实现,我想使用 OpenCV 库将它翻译成 C++。

基本上我所做的是从输入图像中提取梯度,我在转换域中做一些事情,然后我回到空间域。

对我来说有问题的部分是执行这个(元素明智的)划分:

DFT(im) = ( conj( DFT(f) ) * DFT(image) + L2 * conj( DFT( gradKernel-x ) ) * DFT(mux) )+ ... ) / ( norm( DFT(f) )^2 + L2 * norm(gradKernel-x)^2 + ... )

f 是代码中定义的高斯核。 DFT( gradKernel-x ) 是梯度内核在 x 方向的 FFT,即 DFT([1,-1]) 零填充到模糊图像的大小。 mux 是执行反卷积的辅助变量。

我决定在执行逆 DFT 之前,在变换域中分别执行幅度和相位除法。

我不知道我的代码中的错误在哪里,可能在除法中,可能在我的变量的正向/逆变换中,在高斯内核中......

如果有人可以帮助我,我将非常感激。

这里是代码的关键部分(注意,我在发布之前对其进行了简化,所以如果你尝试它,不要指望一个好的去模糊效果,基本上我期望从中得到一个视觉上令人愉悦的输出图像):

imH00=imread("Cameraman256.png",0);
if(!imH00.data)                             

    std::cout<<  "Could not open or find the image" << std::endl ;
    return -1;


imH00.convertTo(imH00,CV_32F,1.0/255.0,0.0);

// Gaussian Kernel
Mat ker1D=getGaussianKernel(ksize,sigma,CV_32F);
fkernel.create(imH00.size(),CV_32F);
// zero-padding
fkernel.setTo(Scalar::all(0));
temp=ker1D*ker1D.t();
temp.copyTo(fkernel(Rect(0,0,temp.rows,temp.cols)));

// Fourier transform
Mat planes[] = Mat_<float>(fkernel), Mat::zeros(fkernel.size(), CV_32F);
Mat ffkernel;
merge(planes, 2, ffkernel);
dft(ffkernel, ffkernel,DFT_COMPLEX_OUTPUT);

// Gradient filter in frequency domain, trying to do something similar to psf2otf([1;-1],size(imH00)); in Matlab.
dx=Mat::zeros(imH00.size(),CV_32F);
dx.at<float>(0,0)=1;
dx.at<float>(0,1)=-1;
Mat dxplanes[] = Mat_<float>(dx), Mat::zeros(dx.size(), CV_32F);
Mat fdx;
merge(dxplanes, 2, fdx);
dft(fdx, fdx,DFT_COMPLEX_OUTPUT);

dy=Mat::zeros(imH00.size(),CV_32F);
dy.at<float>(0,0)=1;
dy.at<float>(1,0)=-1;
Mat dyplanes[] = Mat_<float>(dy), Mat::zeros(dy.size(), CV_32F);
Mat fdy;
merge(dyplanes, 2, fdy);
dft(fdy, fdy,DFT_COMPLEX_OUTPUT);

// Denominators

Mat den1;
Mat den2;
Mat den21;
Mat den22;

// ||fdx||^2 and ||fdy||^2
mulSpectrums(fdx,fdx,den21,DFT_COMPLEX_OUTPUT,true); 
mulSpectrums(fdy,fdy,den22,DFT_COMPLEX_OUTPUT,true); 
add(den21,den22,den2);

mulSpectrums(ffkernel,ffkernel,den1,0,true);

imHk=imH00.clone();

mux=Mat::zeros(imH00.size(),CV_32F);
muy=Mat::zeros(imH00.size(),CV_32F);

// FFT imH00 
    Mat fHktplanes[] = Mat_<float>(imH00), Mat::zeros(imH00.size(), CV_32F);
    Mat fHkt;
    merge(fHktplanes, 2, fHkt);
    dft(fHkt, fHkt,DFT_COMPLEX_OUTPUT);

std::cout<<"starting deconvolution"<<std::endl;
for (int j=0; j<4; j++)

    // Deconvolution 

    // Gradients 

    Mat ddx(1,2,CV_32F,Scalar(0));
    ddx.at<float>(0,0)=1;
    ddx.at<float>(0,1)=-1;
    filter2D(imHk,dHx,CV_32F,ddx);

    Mat ddy(2,1,CV_32F,Scalar(0));
    ddy.at<float>(0,0)=1;
    ddy.at<float>(1,0)=-1;
    filter2D(imHk,dHy,CV_32F,ddy);


    mux=Scalar((float)-0.5*L1/L2);
    add(mux,dHx,mux);

    muy=Scalar((float)-0.5*L1/L2);
    add(muy,dHy,muy);

    // FFT mux, muy
    Mat fmuxplanes[] = Mat_<float>(mux), Mat::zeros(mux.size(), CV_32F);
    Mat fmux;
    merge(fmuxplanes, 2, fmux);
    dft(fmux, fmux,DFT_COMPLEX_OUTPUT);

    Mat fmuyplanes[] = Mat_<float>(muy), Mat::zeros(muy.size(), CV_32F);
    Mat fmuy;
    merge(fmuyplanes, 2, fmuy);
    dft(fmuy, fmuy,DFT_COMPLEX_OUTPUT);

    Mat num1,num2,num3,num,den;

    // Spectrums multiplication, complex conjugate
    mulSpectrums(fHkt,ffkernel,num1,DFT_COMPLEX_OUTPUT,true);
    mulSpectrums(fmux,fdx,num2,DFT_COMPLEX_OUTPUT,true);
    mulSpectrums(fmuy,fdy,num3,DFT_COMPLEX_OUTPUT,true);

    add(num2,num3,num2);
    add(num1,L2*num2,num);
    add(den1,L2*den2,den);

    // Division in polar coordinates

    Mat auxnum[2];
    split(num,auxnum);
    Mat auxden[2];
    split(den,auxden);

    Mat numMag,numPhase;
    magnitude(auxnum[0],auxnum[1],numMag);
    phase(auxnum[0],auxnum[1],numPhase);

    Mat denMag,denPhase;
    magnitude(auxden[0],auxden[1],denMag);
    phase(auxden[0],auxden[1],denPhase);

    Mat division[2];
    divide(numMag,denMag,division[0]);
    division[1]=numPhase-denPhase;

    polarToCart(division[0],division[1],division[0],division[1]);
    Mat fHk;
    merge(division,2,fHk);

    Mat imHkaux;
    Mat planesfHk[2];
    dft(fHk, imHkaux, DFT_INVERSE+DFT_SCALE);
    split(imHkaux,planesfHk);
    imHk=planesfHk[0]; // imHk is the Real part

imHk.convertTo(imHk,CV_8U,255);
imshow( "Deblurred image", imHk);

谢谢

【问题讨论】:

抱歉,我在您的帖子中没有看到任何问题。 好吧,问题是:我做错了什么? 您能否更详细地描述它是如何出错的?例如,您是否收到任何错误消息? 它提供视觉上令人不快的图像,例如this。经过测试,我几乎可以确定问题出在傅里叶域中的梯度滤波器和/或高斯滤波器。 如果您不能完全确定哪里出错了,我建议您将 matlab 代码和 c++ 代码逐块运行,看看何时出现第一个差异。这应该让您知道要解决的问题。您可能需要扩展您的 matlab 代码来执行此操作,但也许它甚至没有必要。 【参考方案1】:

问题在于滤波器的傅里叶变换。我们需要在转换之前移动过滤器内核。这与 psf2otf 函数在 Matlab 中的作用相同。如果有人感兴趣,这个简单的代码应该执行不受居中影响的高斯核的 DFT(如 psf2otf):

float sigma=1.0;
short int ksize=13; // always odd

Mat ker1D=getGaussianKernel(ksize,sigma,CV_32F); //1D gaussian kernel
fkernel.create(myImage.size(),CV_32F); //

// zero-padding
fkernel.setTo(Scalar::all(0));
temp=ker1D*ker1D.t(); // 2D gaussian kernel, (Gaussian filter is separable)

int r=(ksize-1)/2; //radius

// shifting

temp(Rect(r,r,r+1,r+1)).copyTo(fkernel(Rect(0,0,r+1,r+1))); // q1
temp(Rect(r,0,r+1,r)).copyTo(fkernel(Rect(0,fkernel.cols-r,r+1,r))); // q2
temp(Rect(0,r,r,r+1)).copyTo(fkernel(Rect(fkernel.rows-r,0,r,r+1))); // q3
temp(Rect(0,0,r,r)).copyTo(fkernel(Rect(fkernel.rows-r,fkernel.cols-r,r,r))); // q4
// DFT
Mat planes[] = Mat_<float>(fkernel), Mat::zeros(fkernel.size(), CV_32F);
Mat ffkernel;
merge(planes, 2, ffkernel);
dft(ffkernel, ffkernel,DFT_COMPLEX_OUTPUT);

【讨论】:

以上是关于傅里叶域中的去模糊算法的主要内容,如果未能解决你的问题,请参考以下文章

OpenCV--傅里叶变换

音频算法入门-傅里叶变换

OpenCV C++(十)----傅里叶变换

应用于傅里叶变换信号的卷积滤波器

scipy之傅里叶变换

scipy之傅里叶变换