无法使用opencv使用霍夫变换定位线
Posted
技术标签:
【中文标题】无法使用opencv使用霍夫变换定位线【英文标题】:Unable to locate the lines using hough transform using opencv 【发布时间】:2012-09-03 16:13:15 【问题描述】:我想使用霍夫变换在下图中找到线条,但我失败了。谁能告诉我问题出在哪里?
我正在使用来自 opencv 的标准代码。
我正在使用 python 和 opencv 2.4.2
调查结果:
-
这些矩形线条非常参差不齐
边缘检测发现断边
即使您指定要连接的参数来填补空白也无济于事。
非常感谢。
编辑 正如“jpa”所建议的那样,图像被反转并且边缘检测步骤也被跳过
这是反转后的图像
使用的参数如下
HoughLinesP(image,10, math.pi/2 ,10 ,None ,1000, 1)
HoughLinesP(image,rho, theta ,threshold,lines,minLineLength, maxLineGap)
输出如下,红色表示存在线条。
【问题讨论】:
对于这样的图像,跳过边缘检测步骤可能会带来更好的运气。只需反转图像(在黑底白字)并将其输入霍夫变换。另一方面,霍夫变换应该可以很好地处理破损的边缘。您可以发布霍夫变换的输出图像吗? 您好,谢谢您的回答,我已经跳过了边缘检测并反转了图像,我正在发布结果图像和参数,以便您知道,atm,行太多,大约 1000以及有白色的部分。 好的;使用自适应阈值,您可能可以摆脱白色背景。 也许您应该将 Python 标记添加到您的问题中。 【参考方案1】:将您的原始图像作为以下程序的输入会产生以下结果:
绿线表示成功检测到的内容。该程序是对 OpenCV 附带的原始 squares 示例稍作修改。
由你来编写忽略最大行(identify the paper)的代码。
这些行存储在vector<vector<Point> > squares
中声明的main()
:
#include "highgui.h"
#include "cv.h"
#include <iostream>
#include <math.h>
#include <string.h>
using namespace cv;
using namespace std;
void help()
cout <<
"\nA program using pyramid scaling, Canny, contours, contour simpification and\n"
"memory storage (it's got it all folks) to find\n"
"squares in a list of images pic1-6.png\n"
"Returns sequence of squares detected on the image.\n"
"the sequence is stored in the specified memory storage\n"
"Call:\n"
"./squares\n"
"Using OpenCV version %s\n" << CV_VERSION << "\n" << endl;
int thresh = 70, N = 2;
const char* wndname = "Square Detection Demo";
// helper function:
// finds a cosine of angle between vectors
// from pt0->pt1 and from pt0->pt2
double angle( Point pt1, Point pt2, Point pt0 )
double dx1 = pt1.x - pt0.x;
double dy1 = pt1.y - pt0.y;
double dx2 = pt2.x - pt0.x;
double dy2 = pt2.y - pt0.y;
return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
// returns sequence of squares detected on the image.
// the sequence is stored in the specified memory storage
void findSquares( const Mat& image, vector<vector<Point> >& squares )
squares.clear();
Mat pyr, timg, gray0(image.size(), CV_8U), gray;
// karlphillip: dilate the image so this technique can detect the white square,
Mat out(image);
dilate(out, out, Mat(), Point(-1,-1));
// then blur it so that the ocean/sea become one big segment to avoid detecting them as 2 big squares.
medianBlur(out, out, 3);
// down-scale and upscale the image to filter out the noise
pyrDown(out, pyr, Size(out.cols/2, out.rows/2));
pyrUp(pyr, timg, out.size());
vector<vector<Point> > contours;
// find squares in every color plane of the image
for( int c = 0; c < 1; c++ )
int ch[] = c, 0;
mixChannels(&timg, 1, &gray0, 1, ch, 1);
// try several threshold levels
for( int l = 0; l < N; l++ )
// hack: use Canny instead of zero threshold level.
// Canny helps to catch squares with gradient shading
if( l == 0 )
// apply Canny. Take the upper threshold from slider
// and set the lower to 0 (which forces edges merging)
Canny(gray0, gray, 0, thresh, 5);
// dilate canny output to remove potential
// holes between edge segments
dilate(gray, gray, Mat(), Point(-1,-1));
else
// apply threshold if l!=0:
// tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0
gray = gray0 >= (l+1)*255/N;
// find contours and store them all as a list
findContours(gray, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
vector<Point> approx;
// test each contour
for( size_t i = 0; i < contours.size(); i++ )
// approximate contour with accuracy proportional
// to the contour perimeter
approxPolyDP(Mat(contours[i]), approx, arcLength(Mat(contours[i]), true)*0.02, true);
// square contours should have 4 vertices after approximation
// relatively large area (to filter out noisy contours)
// and be convex.
// Note: absolute value of an area is used because
// area may be positive or negative - in accordance with the
// contour orientation
if( approx.size() == 4 &&
fabs(contourArea(Mat(approx))) > 1000 &&
isContourConvex(Mat(approx)) )
double maxCosine = 0;
for( int j = 2; j < 5; j++ )
// find the maximum cosine of the angle between joint edges
double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
maxCosine = MAX(maxCosine, cosine);
// if cosines of all angles are small
// (all angles are ~90 degree) then write quandrange
// vertices to resultant sequence
if( maxCosine < 0.3 )
squares.push_back(approx);
// the function draws all the squares in the image
void drawSquares( Mat& image, const vector<vector<Point> >& squares )
for( size_t i = 1; i < squares.size(); i++ )
const Point* p = &squares[i][0];
int n = (int)squares[i].size();
polylines(image, &p, &n, 1, true, Scalar(0,255,0), 3, CV_AA);
imshow(wndname, image);
int main(int argc, char** argv)
if (argc < 2)
cout << "Usage: ./program <file>" << endl;
return -1;
static const char* names[] = argv[1], 0 ;
help();
namedWindow( wndname, 1 );
vector<vector<Point> > squares;
for( int i = 0; names[i] != 0; i++ )
Mat image = imread(names[i], 1);
if( image.empty() )
cout << "Couldn't load " << names[i] << endl;
continue;
findSquares(image, squares);
drawSquares(image, squares);
imwrite("out.jpg", image);
int c = waitKey();
if( (char)c == 27 )
break;
return 0;
【讨论】:
@karlphilip,非常感谢您的回答,看起来很酷。但问题是它找到了边角为 90 度的正方形。我正在处理的具体问题是检测原始形式的边并将它们优化为 90 度。用正方形近似轮廓会失去这个。有什么建议吗? 你能告诉我在这里使用 mixChannels 的确切目的是什么,我假设只是复制数据 mixChannels(&timg, 1, &gray0, 1, ch, 1);谢谢 更多信息:mixChannels()
关于您的第一个问题,您是否使用角上具有不同角度(不是 90 度)的正方形测试了此应用程序?以上是关于无法使用opencv使用霍夫变换定位线的主要内容,如果未能解决你的问题,请参考以下文章
即使图像在 Python 中的 OpenCV 中包含多行,霍夫线变换也只能识别一行
opencv —— HoughLinesHoughLinesP 霍夫线变换(标准霍夫线变换多尺度霍夫线变换累积概率霍夫线变换)