C++ 在 .size() 之后丢失向量元素

Posted

技术标签:

【中文标题】C++ 在 .size() 之后丢失向量元素【英文标题】:C++ losing vector elements after .size() 【发布时间】:2014-04-11 20:44:16 【问题描述】:

我是 C++ 新手,我的问题是我以某种方式(似乎)仅通过调用 .size() 就丢失了向量元素。对于以下代码段(下面附有完整代码),我得到以下输出:

A: number of elements: 560
B: number of elements: 560
B: number of elements: 0
B: number of elements: 0
B: number of elements: 0
C: number of elements: 0

//有问题的部分

cout << "A: number of elements: " << combinations.size() << endl;
float sum_vect[120][2];
for (int i = 0; i < combinations.size(); ++i) 
    for (int j = 0; j < 2; ++j) 
        sum_vect[i][j] = 0;
    

cout << "B: number of elements: " << combinations.size() << endl;
cout << "B: number of elements: " << combinations.size() << endl;
cout << "B: number of elements: " << combinations.size() << endl;
cout << "B: number of elements: " << combinations.size() << endl;

for (int i = 0; i < combinations.size(); ++i) 
    combination = combinations.at(i);
    for (int j = 0; j < order; ++j) 
        sum_vect[i][0] += (float)virtual_pos[combination[j]][0];
        sum_vect[i][1] += (float)virtual_pos[combination[j]][1];
    


vector<int> optimal_ind;
cout << "C: number of elements: " << combinations.size() << endl;

//辅助功能

   void nchoosek_helper(int offset, int n, int k, vector<vector<int>> &combinations, vector<int> combination) 
        if (k == 0) 
            combinations.push_back(combination);
            return;
        
        for (int i = offset; i <= n - k; ++i) 
            combination.push_back(i);
            nchoosek_helper(i+1, n, k-1, combinations, combination);
                combination.pop_back();
        
    


double euclidean_norm(double dist1, double dist2)
    return sqrt(pow(dist1,2) + pow(dist2,2));

//问题的功能从这里开始

//weirdest: look at A B C
vector<vector<char> > step37::CUDADriver::get_access_pattern(int order)
    vector<vector<char> > result;
    vector<vector<int> > combinations;
    vector<int> combination;

    nchoosek_helper(0, 16 ,order, combinations, combination);
    cout << "number of combinations: " << combination.size() << endl;


    //                    //mapping lexical index 1-16 to 2D array
    int virtual_pos [16][2];
    for (int i = 0; i < 16; ++i) 
        virtual_pos[i][0] = i%4 * order; //write x
        virtual_pos[i][1] = (int)ceil(i/4) * order; //write y
        cout << "mapping " << i << "to (" << i%4 * order << "'" << (int)ceil(i/4) * order<< ")" << endl;
    

    cout << "A: number of elements: " << combinations.size() << endl;
    float sum_vect[120][2];
    for (int i = 0; i < combinations.size(); ++i) 
        for (int j = 0; j < 2; ++j) 
            sum_vect[i][j] = 0;
        
    
    cout << "B: number of elements: " << combinations.size() << endl;
    cout << "B: number of elements: " << combinations.size() << endl;
    cout << "B: number of elements: " << combinations.size() << endl;
    cout << "B: number of elements: " << combinations.size() << endl;

    for (int i = 0; i < combinations.size(); ++i) 
        combination = combinations.at(i);
        for (int j = 0; j < order; ++j) 
            sum_vect[i][0] += (float)virtual_pos[combination[j]][0];
            sum_vect[i][1] += (float)virtual_pos[combination[j]][1];
        
    

    vector<int> optimal_ind;
    cout << "C: number of elements: " << combinations.size() << endl;

    cout << "main loop"<< endl;
    for (int i = order; i < order*2; ++i) 
        for (int j = order; j < order*2; ++j) 
            int pos [2];
            //        pos[0] = i;
            //        pos[1] = j;
            pos[0] = j;
            pos[1] = i;

            cout << "current position: (" << j << "," << i << ")" << endl;

            float min_len = std::numeric_limits<float>::infinity(); //minimum length of combined vector
            float min_sum_ind = std::numeric_limits<float>::infinity(); //minimum sum of individual vectors
            int min_idx = -1;

            for (int k = 0; k < combinations.size(); ++k) 
                int curr_vect [2];
                curr_vect[0] = sum_vect[k][0] - pos[0] * order;
                curr_vect[1] = sum_vect[k][1] - pos[1] * order;

                float curr_len = euclidean_norm(curr_vect[0], curr_vect[1]);

                float min_sum_tmp = 0;
                combination = combinations[k];

                for (int l = 0; l < order; ++l) 
                    min_sum_tmp += euclidean_norm(virtual_pos[combination.at(l)][0] - pos[0],
                            virtual_pos[combination.at(l)][1]- pos[1]);
                

                if (i==4&&j==4)
                    cout << "  ind sum: " << min_sum_tmp << "   len: " << curr_len <<  "    sv: (" << sum_vect[k][0] << "," << sum_vect[k][1] <<
                            ")  cv: (" << curr_vect[0] << ","  << curr_vect[1] << ")" <<endl;

                

                if (min_len > curr_len ||
                        min_len == curr_len && min_sum_tmp < min_sum_ind)
                    min_len = curr_len;
                    min_idx = k;
                    min_sum_ind = min_sum_tmp;
                
            

            //        cout <<

            cout << "pushing minimal idx " << min_idx << endl;
            optimal_ind.push_back(min_idx);
        
    

    cout << "main loop done"<< endl;

    //unpack optimal combinations into relative movements
    vector<char> optimal_x((int)pow(order,3));
    vector<char> optimal_y((int)pow(order,3));

    cout << "number of elements: " << combinations.size() << endl;
    for (int i = 0; i <(int)pow(order,2); ++i) 
        cout << "optimal idx: " << optimal_ind.at(i) << endl;
        combination = combinations.at(optimal_ind.at(i));
        for (int j = 0; j < order; ++j) 
            int lex_idx = combination.at(j); //some index between 0 and 15 from 4x4 grid

            //mvt range in grid relative to thread position: -1 to +
            int relative_x = -1 + lex_idx % 4;
            int relative_y = -1 + (int) floor(lex_idx / 4);

            optimal_x[i * order + j] = relative_x;
            optimal_y[i * order + j] = relative_y;
        
    

    //DEBUG print
    for (int i = 0; i < (int)pow(order,2); ++i) 
        combination = combinations.at(optimal_ind.at(i));
        cout << "combination: " << i << "   ";
        for (int j = 0; j < order; ++j) 
            cout << combination.at(j) << " ";
        
        cout <<  endl;
    

    result.push_back(optimal_x);
    result.push_back(optimal_y);

    for (int i = 0; i < optimal_x.size(); ++i) 
        cout << (int)optimal_x.at(i) << " " << endl;
    

    cout << "optimal sizes: " << optimal_x.size() << endl;
    cout << "optimal sizes: " << optimal_y.size() << endl;


     cout << "result size: " << result.size() << endl;

    return result;

我真的不明白像 .size() 这样的函数怎么可能改变矢量对象(或者它可能只是同时发生)。该应用程序在单线程中运行,但我想无论如何都无关紧要,因为所有相关的内容都应该包含在函数的范围内。显然,当我实际尝试访问组合的某些元素(std::out_of_range)时,代码会在稍后停止工作。鉴于错误的严重性,我想我一定错过了一些非常基本的东西。令人不安的是,如果我使用 2 作为 get_access_pattern() 的参数,一切都会正常工作。以上所有内容(使用 3 和 4 测试)都会导致此错误。

【问题讨论】:

【参考方案1】:

你有一个缓冲区溢出。你的输出:

A: number of elements: 560

您的代码:

cout << "A: number of elements: " << combinations.size() << endl;
float sum_vect[120][2];
for (int i = 0; i < combinations.size(); ++i) 
   for (int j = 0; j < 2; ++j) 
      sum_vect[i][j] = 0;
    

查看“i”变量在该循环中达到 120 时的值。您正在访问 sum_vect[120][j],这是超出范围的。

当发生缓冲区溢出时,您的程序将表现出未定义的行为。

【讨论】:

谢谢,我完全忘记了我在处理另一个错误时放了一个常量。我想这就是人们告诉我尽可能使用向量的原因之一。非常感谢!

未定义的行为...实际上像时尚一样以定时炸弹的形式出现错误真的很可怕。

std::vector&lt;std::vector&lt;float&gt;&gt; sum_vect(combinations.size(), std::vector&lt;float&gt;(2,0)); 应该这样做,并删除循环以将数据初始化为0。

以上是关于C++ 在 .size() 之后丢失向量元素的主要内容,如果未能解决你的问题,请参考以下文章

C++ - 弹出向量的第一个元素

调用 C++ 向量的每个元素的成员函数

是否可以在 C++ 中更改向量的开始位置以清除其前 n 个元素?

从向量中删除一个元素而不删除之后的元素

C++ 向量操作

c++ 向量的 size() 和 capacity()