从压缩的公钥导出 ECDSA 未压缩的公钥
Posted
技术标签:
【中文标题】从压缩的公钥导出 ECDSA 未压缩的公钥【英文标题】:Deriving an ECDSA uncompressed public key from a compressed one 【发布时间】:2017-09-23 13:34:19 【问题描述】:我目前正在尝试从压缩的公钥中导出比特币未压缩的 ECDSA 公钥。
根据这个link on the Bitcoin wiki,是可以做到的……但是怎么做呢?
为您提供更多详细信息:截至目前,我已经在比特币网络上收集了压缩密钥(33 字节长)。
它们的格式如下:。 从那里,我想获得一个未压缩的密钥(65 字节长),其格式为:
根据这个other link on the Bitcoin wiki,应该和解方程一样简单:
Y^2 = X^3 + 7
但是,我似乎无法到达那里。我对 Y 的价值简直太遥远了。这是我的代码(公钥的值来自Bitcoin wiki example):
import binascii
from decimal import *
expected_uncompressed_key_hex = '0450863AD64A87AE8A2FE83C1AF1A8403CB53F53E486D8511DAD8A04887E5B23522CD470243453A299FA9E77237716103ABC11A1DF38855ED6F2EE187E9C582BA6'
expected_y_hex = expected_uncompressed_key_hex[-64:]
expected_y_dec = int(expected_y_hex, 16)
x_hex = expected_uncompressed_key_hex[2:66]
if expected_y_dec % 2 == 0:
prefix = "02"
else:
prefix = "03"
artificial_compressed_key = prefix + x_hex
getcontext().prec = 500
test_dec = Decimal(int(x_hex, 16))
y_square_dec = test_dec**3 + 7
if prefix == "02":
y_dec = - Decimal(y_square_dec).sqrt()
else:
y_dec = Decimal(y_square_dec).sqrt()
computed_y_hex = hex(int(y_dec))
computed_uncompressed_key = "04" + x + computed_y_hex
关于信息,我的输出是:
computed_y_hex = '0X2D29684BD207BF6D809F7D0EB78E4FD61C3C6700E88AB100D1075EFA8F8FD893080F35E6C7AC2E2214F8F4D088342951'
expected_y_hex = '2CD470243453A299FA9E77237716103ABC11A1DF38855ED6F2EE187E9C582BA6'
感谢您的帮助!
【问题讨论】:
一个带有比特币标签的实际编程问题。这很少见…… 【参考方案1】:我知道这个问题已经得到解答,我实际上从这个答案中受益,所以谢谢。问题是我在 C# 中寻找相同的解决方案时找到了 3 次这些答案,而我并没有真正在 python 中编码:)。所以对于任何试图解决这个问题的人来说,这里有一个 C# 解决方案,玩得开心! :)(它使用 BouncyCastle 库)。
using System;
using System.Collections.Generic;
using System.Linq;
using MoreLinq;
using NBitcoin;
using Org.BouncyCastle.Asn1.X9;
using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Math;
using Org.BouncyCastle.Math.EC;
namespace BitcoinPublicKeyDecompression
public class Program
public static void Main()
const string cPubKey = "0250863ad64a87ae8a2fe83c1af1a8403cb53f53e486d8511dad8a04887e5b2352";
var uPubKey = cPubKey.ToHexByteArray().BitcoinDecompressPublicKey().ToHexString();
var expectedUPubKey = new PubKey(cPubKey).Decompress().ToString();
Console.WriteLine($"Public Key:\n\ncPubKey\n\nhas been (uPubKey == expectedUPubKey ? "correctly" : "incorrectly") decompressed to:\n\nuPubKey");
Console.WriteLine("\nPress any key to quit...");
Console.ReadKey();
public static class Extensions
public static readonly byte[] EmptyByteArray = new byte[0];
public static byte[] BitcoinDecompressPublicKey(this byte[] bPubC)
var ecPubKey = bPubC.BitcoinCompressedPublicKeyToECPublicKey();
return ecPubKey.ToBitcoinUncompressedPublicKey();
public static ECPublicKeyParameters BitcoinCompressedPublicKeyToECPublicKey(this byte[] bPubC)
var pubKey = bPubC.Skip(1).ToArray();
var curve = ECNamedCurveTable.GetByName("secp256k1");
var domainParams = new ECDomainParameters(curve.Curve, curve.G, curve.N, curve.H, curve.GetSeed());
var yParity = new BigInteger(bPubC.Take(1).ToArray()).Subtract(BigInteger.Two);
var x = new BigInteger(1, pubKey);
var p = ((FpCurve)curve.Curve).Q;
var a = x.ModPow(new BigInteger("3"), p).Add(new BigInteger("7")).Mod(p);
var y = a.ModPow(p.Add(BigInteger.One).FloorDivide(new BigInteger("4")), p);
if (!y.Mod(BigInteger.Two).Equals(yParity))
y = y.Negate().Mod(p);
var q = curve.Curve.CreatePoint(x, y);
return new ECPublicKeyParameters(q, domainParams);
public static byte[] ToBitcoinUncompressedPublicKey(this AsymmetricKeyParameter ecPublicKey)
var publicKey = ((ECPublicKeyParameters)ecPublicKey).Q;
var xs = publicKey.AffineXCoord.ToBigInteger().ToByteArrayUnsigned().PadStart(32);
var ys = publicKey.AffineYCoord.ToBigInteger().ToByteArrayUnsigned().PadStart(32);
return new byte[] 0x04 .ConcatMany(xs, ys).ToArray();
public static BigInteger FloorDivide(this BigInteger a, BigInteger b)
if (a.CompareTo(BigInteger.Zero) > 0 ^ b.CompareTo(BigInteger.Zero) < 0 && !a.Mod(b).Equals(BigInteger.Zero))
return a.Divide(b).Subtract(BigInteger.One);
return a.Divide(b);
public static byte[] ToHexByteArray(this string str)
byte[] bytes;
if (string.IsNullOrEmpty(str))
bytes = EmptyByteArray;
else
var string_length = str.Length;
var character_index = str.StartsWith("0x", StringComparison.Ordinal) ? 2 : 0;
var number_of_characters = string_length - character_index;
var add_leading_zero = false;
if (0 != number_of_characters % 2)
add_leading_zero = true;
number_of_characters += 1;
bytes = new byte[number_of_characters / 2];
var write_index = 0;
if (add_leading_zero)
bytes[write_index++] = CharacterToByte(str[character_index], character_index);
character_index += 1;
for (var read_index = character_index; read_index < str.Length; read_index += 2)
var upper = CharacterToByte(str[read_index], read_index, 4);
var lower = CharacterToByte(str[read_index + 1], read_index + 1);
bytes[write_index++] = (byte)(upper | lower);
return bytes;
public static byte CharacterToByte(char character, int index, int shift = 0)
var value = (byte)character;
if (0x40 < value && 0x47 > value || 0x60 < value && 0x67 > value)
if (0x40 != (0x40 & value))
return value;
if (0x20 == (0x20 & value))
value = (byte)((value + 0xA - 0x61) << shift);
else
value = (byte)((value + 0xA - 0x41) << shift);
else if (0x29 < value && 0x40 > value)
value = (byte)((value - 0x30) << shift);
else
throw new InvalidOperationException($"Character 'character' at index 'index' is not valid alphanumeric character.");
return value;
public static string ToHexString(this byte[] value, bool prefix = false)
var strPrex = prefix ? "0x" : "";
return strPrex + string.Concat(value.Select(b => b.ToString("x2")).ToArray());
public static IEnumerable<T> ConcatMany<T>(this IEnumerable<T> enumerable, params IEnumerable<T>[] enums)
return enumerable.Concat(enums.SelectMany(x => x));
结果:
【讨论】:
【参考方案2】:这里是一个没有任何第 3 方 python 库的示例代码:
def pow_mod(x, y, z):
"Calculate (x ** y) % z efficiently."
number = 1
while y:
if y & 1:
number = number * x % z
y >>= 1
x = x * x % z
return number
# prime p = 2^256 - 2^32 - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1
p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
# bitcoin's compressed public key of private key 55255657523dd1c65a77d3cb53fcd050bf7fc2c11bb0bb6edabdbd41ea51f641
compressed_key = '0314fc03b8df87cd7b872996810db8458d61da8448e531569c8517b469a119d267'
y_parity = int(compressed_key[:2]) - 2
x = int(compressed_key[2:], 16)
a = (pow_mod(x, 3, p) + 7) % p
y = pow_mod(a, (p+1)//4, p)
if y % 2 != y_parity:
y = -y % p
uncompressed_key = '04:x:x'.format(x, y)
print(uncompressed_key)
# should get 0414fc03b8df87cd7b872996810db8458d61da8448e531569c8517b469a119d267be5645686309c6e6736dbd93940707cc9143d3cf29f1b877ff340e2cb2d259cf
参考比特币谈话:https://bitcointalk.org/index.php?topic=644919.0
【讨论】:
【参考方案3】:你需要在字段中计算,这主要意味着你必须在每次计算后将你的数字除以p后的余数。计算这个称为取模,在python中写为% p
。
在这个领域中求幂可以比简单的乘法和减法更有效。这称为模幂运算。 Python 的内置指数函数 pow(n,e,p) 可以解决这个问题。
剩下的问题是求平方根。幸运的是 secp256k1 以一种特殊的方式 () 被选择,因此取平方根很容易:x 的平方根是 。
因此,您的代码的简化版本变为:
import binascii
p_hex = 'FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F'
p = int(p_hex, 16)
compressed_key_hex = '0250863AD64A87AE8A2FE83C1AF1A8403CB53F53E486D8511DAD8A04887E5B2352'
x_hex = compressed_key_hex[2:66]
x = int(x_hex, 16)
prefix = compressed_key_hex[0:2]
y_square = (pow(x, 3, p) + 7) % p
y_square_square_root = pow(y_square, (p+1)/4, p)
if (prefix == "02" and y_square_square_root & 1) or (prefix == "03" and not y_square_square_root & 1):
y = (-y_square_square_root) % p
else:
y = y_square_square_root
computed_y_hex = format(y, '064x')
computed_uncompressed_key = "04" + x_hex + computed_y_hex
print computed_uncompressed_key
【讨论】:
您的散文使用(p MINUS 1) / 4
,但您的代码使用(p PLUS 1) / 4
。在我不知道该更正哪个公式之前没有看到该公式:)。
@bartonjs:感谢您的关注。我已经修好了(代码是正确的)。
你好@RasmusFaber,我要感谢你清晰、干净的代码和你的解释。但是,我担心它在我实施时不起作用。我只是将语法从 python 2 更改为 3,但我得到的 y 值是:xacc68af70eb1c42c7e2fb7364ad544b527c3926b32ad2cea6af8cea8907b734
当我期望 2CD470243453A299FA9E77237716103ABC11A1DF38855ED6F2EE187E9C582BA6
时。知道发生了什么吗?再次感谢!
@Clara-sininen :我不知道你到底做了什么,但这很好用:repl.it/HeAZ/0
@RasmusFaber 你说得对,我只是写了pow(y_square, (p+1)/4, p)
而不是pow(y_square, (p+1)//4, p)
...无论如何,它现在可以正常工作了。非常感谢您的帮助和耐心:)【参考方案4】:
椭圆曲线的域不在实数域之上。它在一个以某个素数为模的有限域上。
对于 Secp256k1,质数 p = 2^256 - 2^32 - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1。
因此:y^2= (x^3) + 7 (mod p)
没有直接的方法来求解方程,你需要使用 Cipolla 的算法:https://en.wikipedia.org/wiki/Cipolla%27s_algorithm
【讨论】:
以上是关于从压缩的公钥导出 ECDSA 未压缩的公钥的主要内容,如果未能解决你的问题,请参考以下文章
如何从 33 字节重构 33 字节压缩 NIST P-256 公钥?