Plotly Python:在具有多个 Y 轴的分组条形图中对齐 X 轴
Posted
技术标签:
【中文标题】Plotly Python:在具有多个 Y 轴的分组条形图中对齐 X 轴【英文标题】:Plotly Python: Align X-Axes in a grouped bar chart with multiple Y-axis 【发布时间】:2018-11-25 14:50:06 【问题描述】:我有一个分组条形图,其中有两个 y 轴,每个轴的比例不同。我正在尝试对齐两个组的 x 轴(y = 0)。我发现很少有链接 link1 和 link2 在其中设置 rangemode='zero' 应该起作用,但是我的数据包含负值,因此我猜将 rangemode 设置为零不起作用。
这是我的代码:
import plotly.offline as plt
import plotly.graph_objs as go
traces = [go.Bar(x=[1,2,3,4], y=[-1,2,-3,4], name='y actual'),
go.Bar(x=[1], y=[0], name='y dummy', hoverinfo='none', showlegend=False),
go.Bar(x=[1],y=[0],yaxis='y2', name='y2 dummy', hoverinfo='none', showlegend=False),
go.Bar(x=[1,2,3,4], y=[22, 2, 13, 25], yaxis='y2', name='y2 actual')]
layout = go.Layout(barmode='group',
yaxis=dict(title='y actual', rangemode="tozero", anchor='x', overlaying='y2'),
yaxis2=dict(title='y2 actual', side='right', rangemode = "tozero", anchor='x'))
fig = go.Figure(data=traces, layout=layout)
plt.iplot(fig)
以上代码生成的图:
我该如何解决这个问题?
注意:您可以在代码中看到两条虚拟痕迹。我介绍了它们,以便“y 实际”和“y2 实际”这两条轨迹不会相互重叠。有关我为什么这样做的更多信息,请查看link
【问题讨论】:
【参考方案1】:一种可能的解决方法:
将两个图形的range
元素设置为彼此成比例,然后轴将对齐。基本上,您的问题是一个轴必须显示负数,而另一个则没有。通过告诉y2
显示负数,我们达到了我们的目标。
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
import plotly.graph_objs as go
init_notebook_mode(connected=True)
traces = [
go.Bar(
x=[1, 2, 3, 4],
y=[-1, 2, -3, 4],
name='y actual'
),
go.Bar(
x=[1],
y=[0],
name='y dummy',
hoverinfo='none',
showlegend=False
),
go.Bar(
x=[1],
y=[0],
yaxis='y2',
name='y2 dummy',
hoverinfo='none',
showlegend=False
),
go.Bar(
x=[1, 2, 3, 4],
y=[22, 2, 13, 25],
yaxis='y2',
name='y2 actual'
)
]
# layout
layout = go.Layout(
barmode='group',
yaxis=dict(
title='y actual',
rangemode="tozero",
#anchor='x',
overlaying='y2',
side="left",
range = [-4, 10]
),
yaxis2=dict(
title='y2 actual',
side='right',
rangemode = "tozero",
#anchor='x',
range = [-12, 30]
)
)
# make fig
fig = go.Figure(data=traces, layout=layout)
iplot(fig)
必须保持它们的比例可能很烦人,但它会确保它们对齐。
为了帮助自动化该过程,您可以使用以下函数生成两个彼此成比例的范围。
def make_proportional_intervals(a, b):
"""
Given two list like objects, compute two proprotionally sized ranges.
This function assumes the max value in both lists is positive and non-zero
"""
min_a, min_b = min(a), min(b)
max_a, max_b = max(a), max(b)
if (min_a >=0) & (min_b >= 0):
# provide a 20% cushion to the scale
return [0, round(1.2*max_a)], [0, round(1.2*max_b)]
else:
if (min_a < min_b) & (max_a < max_b):
n = -(-max_b // max_a)
# n = math.ceil(max_b / max_a), if you cannot assume ints.
return [min_a, max_a], [n*min_a, n*max_a]
elif (min_b < min_a) & (max_b < max_a):
n = -(-max_a // max_b)
# n = math.ceil(max_b / max_a), if you cannot assume ints.
return [n*min_b, n*max_b], [min_b, max_b]
elif (min_b < min_a) & (max_a < max_b):
n = max( -(-max_b // max_a), -(min_b // min_a) )
return [min_b / n, max_b / n], [min_b, max_b]
elif (min_a < min_b) & (max_b < max_a):
n = max( -(-max_a // max_b), -(min_a // min_b) )
return [min_a, max_a], [min_a / n, max_a / n]
elif (min_a == min_b):
m = max(max_a, max_b)
return [min_a, m], [min_b, m]
elif max_a == max_b:
m = min(min_a, min_b)
return [m, max_a], [m, max_b]
此函数假定您的值将是整数,但如果不是,您可以import math
并使用math.ceil()
而不是我的整数除法。我避免添加更多的进口。如果您想查看此代码的运行情况,我在 jupyter notebook 中创建了一个示例,您可以多次运行该示例以查看它如何处理不同的数组。
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
import plotly.graph_objs as go
import numpy as np
def make_proportional_intervals(a, b):
"""
Given two list like objects, compute two proprotionally sized ranges.
This function assumes the max value in both lists is positive and non-zero
"""
min_a, min_b = min(a), min(b)
max_a, max_b = max(a), max(b)
if (min_a >=0) & (min_b >= 0):
# provide a 20% cushion to the scale
return [0, round(1.2*max_a)], [0, round(1.2*max_b)]
else:
if (min_a < min_b) & (max_a < max_b):
n = -(-max_b // max_a)
# n = math.ceil(max_b / max_a), if you cannot assume ints.
return [min_a, max_a], [n*min_a, n*max_a]
elif (min_b < min_a) & (max_b < max_a):
n = -(-max_a // max_b)
# n = math.ceil(max_b / max_a), if you cannot assume ints.
return [n*min_b, n*max_b], [min_b, max_b]
elif (min_b < min_a) & (max_a < max_b):
n = max( -(-max_b // max_a), -(min_b // min_a) )
return [min_b / n, max_b / n], [min_b, max_b]
elif (min_a < min_b) & (max_b < max_a):
n = max( -(-max_a // max_b), -(min_a // min_b) )
return [min_a, max_a], [min_a / n, max_a / n]
elif (min_a == min_b):
m = max(max_a, max_b)
return [min_a, m], [min_b, m]
elif max_a == max_b:
m = min(min_a, min_b)
return [m, max_a], [m, max_b]
init_notebook_mode(connected=True)
y0 = np.random.randint(-5, 35, 6)
y1 = np.random.randint(-7, 28, 6)
print(y0, y1)
range0, range1 = make_proportional_intervals(y0, y1)
traces = [
go.Bar(
x=[1, 2, 3, 4, 5, 6],
y=y0,
name='y actual'
),
go.Bar(
x=[1],
y=[0],
name='y dummy',
hoverinfo='none',
showlegend=False
),
go.Bar(
x=[1],
y=[0],
yaxis='y2',
name='y2 dummy',
hoverinfo='none',
showlegend=False
),
go.Bar(
x=[1, 2, 3, 4, 5, 6],
y=y1,
yaxis='y2',
name='y2 actual'
)
]
# layout
layout = go.Layout(
barmode='group',
yaxis=dict(
title='y actual',
rangemode="tozero",
#anchor='x',
overlaying='y2',
side="left",
range = range0
),
yaxis2=dict(
title='y2 actual',
side='right',
rangemode = "tozero",
#anchor='x',
range = range1
)
)
fig = go.Figure(data=traces, layout=layout)
iplot(fig)
同样,这只是一个解决方法,因为您有负数并且不能使用rangemode = "tozero"
作为场景here。也许开发人员将来会在rangemode
中添加一些内容来纠正这个问题。
【讨论】:
你是对的。这有点烦人,但它有效。谢谢 如果您提前大致了解数据的结构,您可以编写一个自动计算范围的函数。但是,如果您不知道数据的外观,该函数可能会变得复杂,绘制一次然后手动调整范围可能会更容易。 是的,但我正在为数百个这样的地块自动化这个过程,它们都在不同的范围内,因此在我的情况下手动调整不是一个可行的解决方案 @ThReSholD 查看更新以尝试解决自动化问题 感谢这个功能,正是我所需要的。以上是关于Plotly Python:在具有多个 Y 轴的分组条形图中对齐 X 轴的主要内容,如果未能解决你的问题,请参考以下文章