如何从现有排名值创建具有递增排名值的运行范围的表?
Posted
技术标签:
【中文标题】如何从现有排名值创建具有递增排名值的运行范围的表?【英文标题】:How can I create a table with a running range of incremented rank values from existing rank values? 【发布时间】:2017-03-03 04:40:26 【问题描述】:我在 Access 2013 中有一个表,其中包含以下字段:唯一位置代码(短文本类型);每个分数都有唯一值的分数(短文本类型);以及每个 Code 的唯一值,按 Score 降序排列,称为 Rank(数字,Long Integer 类型)。大约有 8,000 条记录。
我想创建一个表格,其中每个 Rank 值在每个 Rank 值的四分位数 (25%) 内的运行范围 - 即,将 1 到 994 添加到每个 Rank 值(994 是总 Rank 值的 12.5%)所有 Rank 值都大于 ,并且对于所有小于每个 Code 的 Rank 值的 Rank 值从每个 Rank 值中减去 1 到 994,以创建总共 1,987 个具有相同 Code 值的 Rank 值记录。
我将使用查询中的排名值将每个代码和排名连接到该排名的四分位数/队列中的所有其他记录。我可以创建查询 - 我知道这将有一个巨大的结果集 - 我只需要首先为每个代码和排名创建运行四分位数/队列排名值的表。
非常感谢任何帮助。当然,我完全赞成在 mysql 中尝试这样做。显然,如果有更简单的方法来实现相同的结果,那也是值得赞赏的。
【问题讨论】:
【参考方案1】:好吧,继续吧。首先,这里有一个函数,可以使用您希望的任何方法为您计算四分位数:
Public Function GetQuartile( _
ByVal strTable As String, _
ByVal strField As String, _
ByVal bytQuartile As Byte, _
Optional ByVal bytMethod As Byte, _
Optional ByVal strFilter As String) _
As Double
' strTable : Name of the table/query to analyze.
' strField : Name of the field to analyze.
' bytQuartile: Which min/max or median/quartile to calculate.
' bytMethod: Method for calculation of lower/higher quartile.
' strFilter: Optional filter expression.
'
' Returns:
' Minimum, maximum, median or upper/lower quartile
' of strField of strTable filtered on strFilter.
'
' 2006-03-05. Cactus Data ApS, CPH.
' Reference for methods for calculation as explained here:
' http://www.daheiser.info/excel/notes/noteh.pdf
' Note: Table H-4, p. 4, has correct data for dataset 1-96 while
' datasets 1-100 to 1-97 actually are datasets 1-99 to 1-96
' shifted one column left.
' Thus, the dataset 1-100 is missing.
'
' Method 3b is not implemented as no one seems to use it.
' Neither are no example data given.
'
' Further notes on methods here:
' http://mathforum.org/library/drmath/view/60969.html
' http://www.haiweb.org/medicineprices/manual/quartiles_iTSS.pdf
'
' Data must be in ascending order by strField.
' L: Q1, Lower quartile.
' H: Q3, Higher quartile.
' M: Q2, Median.
' n: Count of elements.
' p: Calculated position of quartile.
' j: Element of dataset.
' g: Decimal part of p
' to be used for interpolation between j and j+1.
' Basic operation.
' Constant values mimic those of Excel's Quartile() function.
' Find median.
Const cbytQuartMedian As Byte = 2
' Find lower (first) quartile.
Const cbytQuartLow As Byte = 1
' Find upper (third) quartile.
Const cbytQuartHigh As Byte = 3
' Find minimum value.
Const cbytQuartMinimum As Byte = 0
' Find maximum value.
Const cbytQuartMaximum As Byte = 4
' Define default operation.
Const cbytQuartDefault = cbytQuartMedian
' Quartile calculation methods.
' Step. Mendenhall and Sincich method.
' SAS #3.
' Round up to actual element of dataset.
' L: -Int(-n/4)
' H: n-Int(-n/4)
Const cbytMethodMendenhallSincich As Byte = 1
' Average step.
' SAS #5, Minitab (%DESCRIBE), GLIM (percentile).
' Add bias of one or two on basis of n/4.
' L: (Int((n+1)/4)+Int(n/4))/2+1
' H: n-(Int((n+1)/4)+Int(n/4))/2+1
Const cbytMethodAverage As Byte = 2
' Nearest integer to np.
' SAS #2.
' Round to nearest integer on basis of n/4.
' L: Int((n+2)/4)
' H: n-Int((n+2)/4)
' Note:
' Reference contains an error in example data.
' Dataset 1-100 to 1-97 (is really 1-99 to 1-96!) should read:
' 25 25 24 24
Const cbytMethodNearestInteger As Byte = 3
' Parzen method.
' Method 1 with interpolation.
' SAS #1.
' L: n/4
' H: 3n/4
Const cbytMethodParzen As Byte = 4
' Hazen method.
' Values midway between method 1 steps.
' GLIM (interpolate).
' Add bias of 2, don't round to actual element of dataset.
' L: (n+2)/4
' H: 3(n+2)/4
Const cbytMethodHazen As Byte = 5
' Weibull method.
' SAS #4. Minitab (DECRIBE), SPSS, BMDP.
' Add bias of 1, don't round to actual element of dataset.
' L: (n+1)/4
' H: 3(n+1)/4
Const cbytMethodWeibull As Byte = 6
' Freund, J. and Perles, B., Gumbell method.
' S-PLUS, R, Excel, Star Office Calc.
' Add bias of 3, don't round to actual element of dataset.
' L: (n+3)/4
' H: (3n+1)/4
Const cbytMethodFreundPerles As Byte = 7
' Median Position.
' Median unbiased.
' L: (3n+5)/12
' H: (9n+7)/12
Const cbytMethodMedianPosition As Byte = 8
' Bernard and Bos-Levenbach.
' L: (n/4)+0.4
' H: (3n/4)/+0.6
' Note:
' Reference claims L to be (n/4)+0.31.
Const cbytMethodBernardLevenbach As Byte = 9
' Blom's Plotting Position.
' Better approximation when the distribution is normal.
' L: (4n+7)/16
' H: (12n+9)/16
Const cbytMethodBlom As Byte = 10
' Moore's first method.
' Add bias of one half step.
' L: (n+0.5)/4
' H: n-(n+0.5)/4
Const cbytMethodMoore1 As Byte = 11
' Moore's second method.
' Add bias of one or two steps on basis of (n+1)/4.
' L: (Int((n+1)/4)+Int(n/4))/2+1
' H: n-(Int((n+1)/4)+Int(n/4))/2+1
Const cbytMethodMoore2 As Byte = 12
' John Tukey's method.
' Include median from odd dataset in dataset for quartile.
' L: (1-Int(-n/2))/2
' H: n-(1-Int(-n/2))/2
Const cbytMethodTukey As Byte = 13
' Moore and McCabe (M & M), variation of John Tukey's method.
' TI-83.
' Exclude median from odd dataset in dataset for quartile.
' L: (Int(n/2)+1)/2
' H: n-(Int(n/2)+1)/2
Const cbytMethodTukeyMM As Byte = 14
' Additional variations between Weibull's and Hazen's methods, from
' (i-0.000)/(n+1.00)
' to
' (i-0.500)/(n+0.00)
'
' Variation of Weibull.
' L: n(n/4-0)/(n+1)
' H: n(3n/4-0)/(n+1)
Const cbytMethodModWeibull As Byte = 15
' Variation of Blom.
' L: n(n/4-3/8)/(n+1/4)
' H: n(3n/4-3/8)/(n+1/4)
Const cbytMethodModBlom As Byte = 16
' Variation of Tukey.
' L: n(n/4-1/3)/(n+1/3)
' H: n(3n/4-1/3)/(n+1/3)
Const cbytMethodModTukey As Byte = 17
' Variation of Cunnane.
' L: n(n/4-2/5)/(n+1/5)
' H: n(3n/4-2/5)/(n+1/5)
Const cbytMethodModCunnane As Byte = 18
' Variation of Gringorten.
' L: n(n/4-0.44)/(n+0.12)
' H: n(3n/4-0.44)/(n+0.12)
Const cbytMethodModGringorten As Byte = 19
' Variation of Hazen.
' L: n(n/4-1/2)/n
' H: n(3n/4-1/2)/n
Const cbytMethodModHazen As Byte = 20
' Define default method to calculate quartiles.
Const cbytMethodDefault = cbytMethodFreundPerles
Static dbs As DAO.Database
Static rst As DAO.Recordset
Dim strSQL As String
Dim lngNumber As Long
Dim dblPosition As Double
Dim lngPosition As Long
Dim dblInterpol As Double
Dim dblValueOne As Double
Dim dblValueTwo As Double
Dim dblQuartile As Double
' Use default calculation if choice of calculation is outside range.
If bytQuartile > 4 Then
bytQuartile = cbytQuartDefault
End If
' Use default method if choice of method is outside range.
If bytMethod = 0 Or bytMethod > 20 Then
bytMethod = cbytMethodDefault
End If
If dbs Is Nothing Then
Set dbs = CurrentDb()
End If
If Len(strTable) > 0 And Len(strField) > 0 Then
strSQL = "SELECT [" & strField & "] FROM [" & strTable & "] "
strSQL = strSQL & "WHERE ([" & strField & "] Is Not Null) "
If Len(strFilter) > 0 Then
strSQL = strSQL & "AND (" & strFilter & ") "
End If
strSQL = strSQL & "ORDER BY [" & strField & "];"
Set rst = dbs.OpenRecordset(strSQL)
With rst
If Not .EOF = True Then
If bytQuartile = cbytQuartMinimum Then
' No need to count records.
lngNumber = 1
Else
' Count records.
.MoveLast
lngNumber = .RecordCount
End If
Select Case bytQuartile
Case cbytQuartMinimum
' Current record is first record.
' Read value of this record.
Case cbytQuartMaximum
' Current record is last record.
' Read value of this record.
Case cbytQuartMedian
' Locate position of median.
dblPosition = (lngNumber + 1) / 2
Case cbytQuartLow
Select Case bytMethod
Case cbytMethodMendenhallSincich
dblPosition = -Int(-lngNumber / 4)
Case cbytMethodAverage
dblPosition = (Int((lngNumber + 1) / 4) + Int(lngNumber / 4)) / 2 + 1
Case cbytMethodNearestInteger
dblPosition = Int((lngNumber + 2) / 4)
Case cbytMethodParzen
dblPosition = lngNumber / 4
Case cbytMethodHazen
dblPosition = (lngNumber + 2) / 4
Case cbytMethodWeibull
dblPosition = (lngNumber + 1) / 4
Case cbytMethodFreundPerles
dblPosition = (lngNumber + 3) / 4
Case cbytMethodMedianPosition
dblPosition = (3 * lngNumber + 5) / 12
Case cbytMethodBernardLevenbach
dblPosition = (lngNumber / 4) + 0.4
Case cbytMethodBlom
dblPosition = (4 * lngNumber + 7) / 16
Case cbytMethodMoore1
dblPosition = (lngNumber + 0.5) / 4
Case cbytMethodMoore2
dblPosition = (Int((lngNumber + 1) / 4) + Int(lngNumber / 4)) / 2 + 1
Case cbytMethodTukey
dblPosition = (1 - Int(-lngNumber / 2)) / 2
Case cbytMethodTukeyMM
dblPosition = (Int(lngNumber / 2) + 1) / 2
Case cbytMethodModWeibull
dblPosition = lngNumber * (lngNumber / 4) / (lngNumber + 1)
Case cbytMethodModBlom
dblPosition = lngNumber * (lngNumber / 4 - 3 / 8) / (lngNumber + 1 / 4)
Case cbytMethodModTukey
dblPosition = lngNumber * (lngNumber / 4 - 1 / 3) / (lngNumber + 1 / 3)
Case cbytMethodModCunnane
dblPosition = lngNumber * (lngNumber / 4 - 2 / 5) / (lngNumber + 1 / 5)
Case cbytMethodModGringorten
dblPosition = lngNumber * (lngNumber / 4 - 0.44) / (lngNumber + 0.12)
Case cbytMethodModHazen
dblPosition = lngNumber * (lngNumber / 4 - 1 / 2) / lngNumber
End Select
Case cbytQuartHigh
Select Case bytMethod
Case cbytMethodMendenhallSincich
dblPosition = lngNumber - (-Int(-lngNumber / 4))
Case cbytMethodAverage
dblPosition = lngNumber - (Int((lngNumber + 1) / 4) + Int(lngNumber / 4)) / 2 + 1
Case cbytMethodNearestInteger
dblPosition = lngNumber - Int((lngNumber + 2) / 4)
Case cbytMethodParzen
dblPosition = 3 * lngNumber / 4
Case cbytMethodHazen
dblPosition = 3 * (lngNumber + 2) / 4
Case cbytMethodWeibull
dblPosition = 3 * (lngNumber + 1) / 4
Case cbytMethodFreundPerles
dblPosition = (3 * lngNumber + 1) / 4
Case cbytMethodMedianPosition
dblPosition = (9 * lngNumber + 7) / 12
Case cbytMethodBernardLevenbach
dblPosition = (3 * lngNumber / 4) + 0.6
Case cbytMethodBlom
dblPosition = (12 * lngNumber + 9) / 16
Case cbytMethodMoore1
dblPosition = lngNumber - (lngNumber + 0.5) / 4
Case cbytMethodMoore2
dblPosition = lngNumber - (Int((lngNumber + 1) / 4) + Int(lngNumber / 4)) / 2 + 1
Case cbytMethodTukey
dblPosition = lngNumber - (1 - Int(-lngNumber / 2)) / 2
Case cbytMethodTukeyMM
dblPosition = lngNumber - (Int(lngNumber / 2) + 1) / 2
Case cbytMethodModWeibull
dblPosition = lngNumber * (3 * lngNumber / 4) / (lngNumber + 1)
Case cbytMethodModBlom
dblPosition = lngNumber * (3 * lngNumber / 4 - 3 / 8) / (lngNumber + 1 / 4)
Case cbytMethodModTukey
dblPosition = lngNumber * (3 * lngNumber / 4 - 1 / 3) / (lngNumber + 1 / 3)
Case cbytMethodModCunnane
dblPosition = lngNumber * (3 * lngNumber / 4 - 2 / 5) / (lngNumber + 1 / 5)
Case cbytMethodModGringorten
dblPosition = lngNumber * (3 * lngNumber / 4 - 0.44) / (lngNumber + 0.12)
Case cbytMethodModHazen
dblPosition = lngNumber * (3 * lngNumber / 4 - 1 / 2) / lngNumber
End Select
End Select
Select Case bytQuartile
Case cbytQuartMinimum, cbytQuartMaximum
' Read current row.
Case Else
.MoveFirst
' Find position of first observation to retrieve.
' If lngPosition is 0, then upper position is first record.
' If lngPosition is not 0 and position is not an integer, then
' read the next observation too.
lngPosition = Fix(dblPosition)
dblInterpol = dblPosition - lngPosition
If lngNumber = 1 Then
' Nowhere else to move.
If dblInterpol < 0 Then
' Prevent values to be created by extrapolation beyond zero from observation one
' for these methods:
' cbytMethodModBlom
' cbytMethodModTukey
' cbytMethodModCunnane
' cbytMethodModGringorten
' cbytMethodModHazen
'
' Comment this line out, if reading by extrapolation *is* requested.
dblInterpol = 0
End If
ElseIf lngPosition > 1 Then
' Move to record to read.
.Move lngPosition - 1
End If
End Select
' Retrieve value from first observation.
dblValueOne = .Fields(0).Value
Select Case bytQuartile
Case cbytQuartMinimum, cbytQuartMaximum
dblQuartile = dblValueOne
Case Else
If dblInterpol = 0 Then
' Only one observation to read.
If lngPosition = 0 Then
' Return 0.
Else
dblQuartile = dblValueOne
End If
Else
If lngPosition = 0 Then
' No first observation to retrieve.
dblValueTwo = dblValueOne
If dblValueOne > 0 Then
' Use 0 as other observation.
dblValueOne = 0
Else
dblValueOne = 2 * dblValueOne
End If
Else
' Move to next observation.
.MoveNext
' Retrieve value from second observation.
dblValueTwo = .Fields(0).Value
End If
' For positive values interpolate between 0 and dblValueOne.
' For negative values interpolate between 2 * dblValueOne and dblValueOne.
' Calculate quartile using linear interpolation.
dblQuartile = dblValueOne + dblInterpol * CDec(dblValueTwo - dblValueOne)
End If
End Select
End If
.Close
End With
Else
' Reset.
Set rst = Nothing
Set dbs = Nothing
End If
''Set rst = Nothing
GetQuartile = dblQuartile
End Function
【讨论】:
谢谢@Gustav。这非常方便。但我不确定它是否符合我的要求。我正在努力充分描述我真正想要的东西。我认为它可以描述为每个单独等级的“增量队列” - 每个有序等级的“运行四分位数”,由每个等级正负 12.5% 范围内的所有等级值组成。 我也不知道。从一张纸开始,画出所需步骤的草图。和/或有一些示例数据,您可以在其中找出结果应该是什么。以上是关于如何从现有排名值创建具有递增排名值的运行范围的表?的主要内容,如果未能解决你的问题,请参考以下文章