Azure 数据块。从sql数据库读取数据的java错误

Posted

技术标签:

【中文标题】Azure 数据块。从sql数据库读取数据的java错误【英文标题】:Azure databricks. java error by reading data from sql database 【发布时间】:2021-08-16 18:54:26 【问题描述】:

我有几个笔记本连接到 sql 服务器并通过查询检索数据。但是,现在我有一个笔记本,我需要从同一服务器获取数据,但需要从另一个数据库获取数据。

代码:

sql_fcd = "(SELECT column_a, columns_b FROM myTable) a"

df_fcd = spark.read.jdbc(url = jdbcMetadataParams["url"], table = "FCD.snelheidStatistiekenSegment", properties = jdbcMetadataParams["properties"])

这会导致错误:

java.lang.IndexOutOfBoundsException: Index: 65535, Size: 0

当然,我检查了 spark.read.jdbc 命令中使用的参数。 sql-server/database的url和用户名密码都OK。

当我将查询中的表名更改为不存在的表时,我收到一个错误,即该表不存在(如预期的那样)。所以连接属性没问题。我还尝试了另一个存在于数据库中的表,但它给出了同样的错误。

什么会导致这个错误?有什么需要在数据库级别配置的吗?

完全错误:

Py4JJavaError                             Traceback (most recent call last)
<command-2272842214196692> in <module>
     18 # put data in dataframes
     19 #df_basis = spark.sql(sql_basis)
---> 20 df_koppeltabel = spark.read.jdbc(url = jdbcMetadataParams["url"], table = sqlKoppeltabel, properties = jdbcMetadataParams["properties"])

/databricks/spark/python/pyspark/sql/readwriter.py in jdbc(self, url, table, column, lowerBound, upperBound, numPartitions, predicates, properties)
    632             jpredicates = utils.toJArray(gateway, gateway.jvm.java.lang.String, predicates)
    633             return self._df(self._jreader.jdbc(url, table, jpredicates, jprop))
--> 634         return self._df(self._jreader.jdbc(url, table, jprop))
    635 
    636 

/databricks/spark/python/lib/py4j-0.10.9-src.zip/py4j/java_gateway.py in __call__(self, *args)
   1303         answer = self.gateway_client.send_command(command)
   1304         return_value = get_return_value(
-> 1305             answer, self.gateway_client, self.target_id, self.name)
   1306 
   1307         for temp_arg in temp_args:

/databricks/spark/python/pyspark/sql/utils.py in deco(*a, **kw)
    125     def deco(*a, **kw):
    126         try:
--> 127             return f(*a, **kw)
    128         except py4j.protocol.Py4JJavaError as e:
    129             converted = convert_exception(e.java_exception)

/databricks/spark/python/lib/py4j-0.10.9-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
    326                 raise Py4JJavaError(
    327                     "An error occurred while calling 012.\n".
--> 328                     format(target_id, ".", name), value)
    329             else:
    330                 raise Py4JError(

Py4JJavaError: An error occurred while calling o777.jdbc.
: java.lang.IndexOutOfBoundsException: Index: 65535, Size: 0
    at java.util.ArrayList.rangeCheck(ArrayList.java:659)
    at java.util.ArrayList.get(ArrayList.java:435)
    at com.microsoft.sqlserver.jdbc.StreamColumns.processDataClassification(StreamColumns.java:303)
    at com.microsoft.sqlserver.jdbc.StreamColumns.setFromTDS(StreamColumns.java:228)
    at com.microsoft.sqlserver.jdbc.SQLServerResultSet$1CursorInitializer.onColMetaData(SQLServerResultSet.java:282)
    at com.microsoft.sqlserver.jdbc.TDSParser.parse(tdsparser.java:109)
    at com.microsoft.sqlserver.jdbc.TDSParser.parse(tdsparser.java:37)
    at com.microsoft.sqlserver.jdbc.SQLServerResultSet.<init>(SQLServerResultSet.java:391)
    at com.microsoft.sqlserver.jdbc.SQLServerStatement.getNextResult(SQLServerStatement.java:1642)
    at com.microsoft.sqlserver.jdbc.SQLServerPreparedStatement.doExecutePreparedStatement(SQLServerPreparedStatement.java:600)
    at com.microsoft.sqlserver.jdbc.SQLServerPreparedStatement$PrepStmtExecCmd.doExecute(SQLServerPreparedStatement.java:522)
    at com.microsoft.sqlserver.jdbc.TDSCommand.execute(IOBuffer.java:7225)
    at com.microsoft.sqlserver.jdbc.SQLServerConnection.executeCommand(SQLServerConnection.java:3053)
    at com.microsoft.sqlserver.jdbc.SQLServerStatement.executeCommand(SQLServerStatement.java:247)
    at com.microsoft.sqlserver.jdbc.SQLServerStatement.executeStatement(SQLServerStatement.java:222)
    at com.microsoft.sqlserver.jdbc.SQLServerPreparedStatement.executeQuery(SQLServerPreparedStatement.java:444)
    at org.apache.spark.sql.execution.datasources.jdbc.JDBCRDD$.resolveTable(JDBCRDD.scala:61)
    at org.apache.spark.sql.execution.datasources.jdbc.JDBCRelation$.getSchema(JDBCRelation.scala:226)
    at org.apache.spark.sql.execution.datasources.jdbc.JdbcRelationProvider.createRelation(JdbcRelationProvider.scala:35)
    at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:387)
    at org.apache.spark.sql.DataFrameReader.loadV1Source(DataFrameReader.scala:387)
    at org.apache.spark.sql.DataFrameReader.$anonfun$load$2(DataFrameReader.scala:376)
    at scala.Option.getOrElse(Option.scala:189)
    at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:376)
    at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:261)
    at org.apache.spark.sql.DataFrameReader.jdbc(DataFrameReader.scala:402)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:380)
    at py4j.Gateway.invoke(Gateway.java:295)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.GatewayConnection.run(GatewayConnection.java:251)
    at java.lang.Thread.run(Thread.java:748)

【问题讨论】:

请发布完整的堆栈跟踪 完成(我希望这就是您对 Stack Trace 的意思:)) 来自 stacktrace 我会说这是 MS SQL JDBC 驱动程序中的一个错误。包含的驱动程序版本取决于 databricks 运行时版本。您可以在 databricks 运行时发行说明中找到它:docs.microsoft.com/en-us/azure/databricks/release-notes/runtime/… 顺便说一句,我们在某些表的数据工厂中遇到了同样的问题。已就此问题联系 Micrisift 【参考方案1】:

我们发现了问题。在导致此错误的 sql 表上,添加了敏感性分类。这会导致 Databricks 和 Datafactory 出现问题。删除这些分类解决了问题

【讨论】:

以上是关于Azure 数据块。从sql数据库读取数据的java错误的主要内容,如果未能解决你的问题,请参考以下文章

用于使用 Azure SQL Server 数据的 C# Web API

如何从 Azure SQL 数据库中的 Blob 解析 Json

何时使用 Azure Blob 存储与 Azure 文件共享?

Xamarin 应用程序 - 如何将 JSON 对象转换为图像,从 Azure SQL DB 读取

将数据从数据库移动到 Azure Blob 存储

我无法从数据块中的 spark 数据帧创建加载数据到 Azure Synapse (DWH)