解析 xml 文件时,由于 spark 中的类型不匹配而无法解决爆炸
Posted
技术标签:
【中文标题】解析 xml 文件时,由于 spark 中的类型不匹配而无法解决爆炸【英文标题】:cannot resolve explode due to type mismatch in spark while parsing xml file 【发布时间】:2018-04-19 09:18:10 【问题描述】:我有一个具有以下架构的数据框
root
|-- DataPartition: long (nullable = true)
|-- TimeStamp: string (nullable = true)
|-- _organizationId: long (nullable = true)
|-- _segmentId: long (nullable = true)
|-- seg:BusinessSegments: struct (nullable = true)
| |-- seg:BusinessSegment: array (nullable = true)
| | |-- element: struct (containsNull = true)
| | | |-- _VALUE: string (nullable = true)
| | | |-- _hierarchicalCode: long (nullable = true)
| | | |-- _industryId: long (nullable = true)
| | | |-- _ranking: long (nullable = true)
|-- seg:GeographicSegments: struct (nullable = true)
| |-- seg:GeographicSegment: struct (nullable = true)
| | |-- _geographyId: long (nullable = true)
| | |-- seg:IsSubtracted: boolean (nullable = true)
| | |-- seg:Sequence: long (nullable = true)
|-- seg:IsCorporate: boolean (nullable = true)
|-- seg:IsElimination: boolean (nullable = true)
|-- seg:IsOperatingSegment: boolean (nullable = true)
|-- seg:IsOther: boolean (nullable = true)
|-- seg:IsShariaCompliant: boolean (nullable = true)
|-- seg:PredecessorSegments: struct (nullable = true)
| |-- seg:PredecessorSegment: long (nullable = true)
|-- seg:SegmentLocalLanguageLabel: struct (nullable = true)
| |-- _VALUE: string (nullable = true)
| |-- _languageId: long (nullable = true)
|-- seg:SegmentName: struct (nullable = true)
| |-- _VALUE: string (nullable = true)
| |-- _languageId: long (nullable = true)
|-- seg:SegmentType: string (nullable = true)
|-- seg:SegmentTypeId: long (nullable = true)
|-- seg:ValidFromPeriodEndDate: string (nullable = true)
|-- _action: string (nullable = true)
现在我想从架构中获取 seg:BusinessSegments.seg:BusinessSegment
值。
但我的问题是当我使用explode 进行此操作时
val GeographicSegmentchildDF = parentDF.select($"DataPartition".as("DataPartition"), $"TimeStamp".as("TimeStamp"), $"_organizationId", $"_segmentId", explode($"seg:GeographicSegments.seg:GeographicSegment").as("GeographicSegments"), $"_action")
val GeographicSegmentchildArrayDF = GeographicSegmentchildDF.select(getDataPartition($"DataPartition").as("DataPartition"), $"TimeStamp".as("TimeStamp"), $"_organizationId".as("OrganizationId"), $"_segmentId".as("SegmentId"), $"GeographicSegments.*", getFFActionChild($"_action").as("FFAction|!|"))
所以在第一行我正在爆炸,在下一行我正在做 * 或扩展 $"GeographicSegments.*",
。
我收到类似的错误 这就是我正在做的事情
线程“主”org.apache.spark.sql.AnalysisException 中的异常: 无法解决 'explode(
seg:GeographicSegments
.seg:GeographicSegment
)' 由于 数据类型不匹配:
我知道这个问题,因为在架构中我得到 seg:GeographicSegment
作为结构而不是数组,这就是我得到的原因。
所以真正的问题是我没有固定的架构。
当 xml 文件中有两条记录时,seg:GeographicSegment
变为数组,然后我的代码工作正常,但是当我只得到一条记录时,它作为结构工作,我的代码失败。
如何在我的代码中处理这个问题。 解析模式时是否必须设置条件? 还是我有呢
这是一种不起作用的情况
val columnTypePredecessorSegments = parentDF.select($"seg:PredecessorSegments.seg:PredecessorSegment").schema.map(_.dataType).head.toString().startsWith("LongType")
//if column type is struct then use .* and array function to convert the struct to array else just use array
val PredecessorSegmentschildDF = if (columnTypePredecessorSegments)
parentDF.select($"DataPartition".as("DataPartition"), $"TimeStamp".as("TimeStamp"), $"_organizationId", $"_segmentId", explode(array($"seg:PredecessorSegments.seg:PredecessorSegment")).as("PredecessorSegments"), $"_action")
else
parentDF.select($"DataPartition".as("DataPartition"), $"TimeStamp".as("TimeStamp"), $"_organizationId", $"_segmentId", explode($"seg:PredecessorSegments.seg:PredecessorSegment").as("PredecessorSegments"), $"_action")
val PredecessorSegmentsDFFinalChilddDF = PredecessorSegmentschildDF.select(getDataPartition($"DataPartition").as("DataPartition"), $"TimeStamp".as("TimeStamp"), $"_organizationId".as("OrganizationId"), $"_segmentId".as("SuccessorSegment"), $"PredecessorSegments.*", getFFActionChild($"_action").as("FFAction|!|"))
PredecessorSegmentsDFFinalChilddDF.show(false)
【问题讨论】:
【参考方案1】:当 xml 文件中有两条记录时,seg:GeographicSegment 变为数组,然后我的代码工作正常,但当我只得到一条记录时,它作为结构工作,我的代码失败。
那么你需要在使用explode之前检查列的数据类型
//checking for struct or array type in that column
val columnType = parentDF.select($"seg:GeographicSegments.seg:GeographicSegment").schema.map(_.dataType).head.toString().startsWith("StructType")
import org.apache.spark.sql.functions._
//if column type is struct then use .* and array function to convert the struct to array else just use array
val GeographicSegmentchildDF = if(columnType)
parentDF.select($"DataPartition".as("DataPartition"), $"TimeStamp".as("TimeStamp"), $"_organizationId", $"_segmentId", explode(array($"seg:GeographicSegments.seg:GeographicSegment.*")).as("GeographicSegments"), $"_action")
else
parentDF.select($"DataPartition".as("DataPartition"), $"TimeStamp".as("TimeStamp"), $"_organizationId", $"_segmentId", explode($"seg:GeographicSegments.seg:GeographicSegment").as("GeographicSegments"), $"_action")
val GeographicSegmentchildArrayDF = GeographicSegmentchildDF.select(getDataPartition($"DataPartition").as("DataPartition"), $"TimeStamp".as("TimeStamp"), $"_organizationId".as("OrganizationId"), $"_segmentId".as("SegmentId"), $"GeographicSegments.*", getFFActionChild($"_action").as("FFAction|!|"))
希望回答对你有帮助
【讨论】:
当我为seg:PredecessorSegments
做同样的事情时,我收到错误 Exception in thread "main" org.apache.spark.sql.AnalysisException: Can only star expand struct data types. Attribute:
ArrayBuffer(PredecessorSegments);
抱歉回复晚了..我已经更新了问题,因为在评论部分看起来不太好..
@AtharvThakur,更新后的代码正在检查与原始问题不同的 LongType。可以肯定的是,该解决方案不会起作用,因为 explode 对数组或地图很有用。您将不得不为该数据类型尝试另一种技术。可能是另一个问题可以帮助你得到答案。 :)以上是关于解析 xml 文件时,由于 spark 中的类型不匹配而无法解决爆炸的主要内容,如果未能解决你的问题,请参考以下文章
如何使用 spark databricks xml 解析器从 Hdfs 目录加载所有 xml 文件