如何在 Apache Spark 上对整数列表进行排序?

Posted

技术标签:

【中文标题】如何在 Apache Spark 上对整数列表进行排序?【英文标题】:How to sort a list of integers on Apache Spark? 【发布时间】:2018-09-02 14:06:50 【问题描述】:

最近我开始使用 Apache Spark 对大量数据进行排序。

在我最初的测试中,我尝试在 PySpark 上对整数列表进行并行排序,但显然使用 sortByKey() 方法发生了错误。

>>> rdd = sc.parallelize([5,3,4,7,6,9])
>>> rdd.sortByKey(True)

2018-09-02 10:39:42 ERROR Executor:91 - Exception in task 2.0 in stage 1.0 (TID 6)
org.apache.spark.api.python.PythonException: Traceback (most recent call last):
  File "C:\spark-2.3.1-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\worker.py", line 230, in main
  File "C:\spark-2.3.1-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\worker.py", line 225, in process
  File "C:\spark-2.3.1-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\serializers.py", line 372, in dump_stream
    vs = list(itertools.islice(iterator, batch))
  File "C:\spark-2.3.1-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\util.py", line 55, in wrapper
    return f(*args, **kwargs)
  File "C:\spark-2.3.1-bin-hadoop2.7\python\pyspark\rdd.py", line 690, in <lambda>
    samples = self.sample(False, fraction, 1).map(lambda kv: kv[0]).collect()
TypeError: 'int' object has no attribute '__getitem__'

        at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:298)
        at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:438)
        at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:421)
        at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:252)
        at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
        at scala.collection.Iterator$class.foreach(Iterator.scala:893)
        at org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28)
        at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
        at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
        at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
        at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310)
        at org.apache.spark.InterruptibleIterator.to(InterruptibleIterator.scala:28)
        at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
        at org.apache.spark.InterruptibleIterator.toBuffer(InterruptibleIterator.scala:28)
        at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289)
        at org.apache.spark.InterruptibleIterator.toArray(InterruptibleIterator.scala:28)
        at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$12.apply(RDD.scala:939)
        at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$12.apply(RDD.scala:939)
        at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2074)
        at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2074)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
        at org.apache.spark.scheduler.Task.run(Task.scala:109)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
        at java.lang.Thread.run(Thread.java:748)
2018-09-02 10:39:42 WARN  TaskSetManager:66 - Lost task 2.0 in stage 1.0 (TID 6, localhost, executor driver): org.apache.spark.api.python.PythonException: Traceback (most recent call last):
  File "C:\spark-2.3.1-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\worker.py", line 230, in main
  File "C:\spark-2.3.1-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\worker.py", line 225, in process
  File "C:\spark-2.3.1-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\serializers.py", line 372, in dump_stream
    vs = list(itertools.islice(iterator, batch))
  File "C:\spark-2.3.1-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\util.py", line 55, in wrapper
    return f(*args, **kwargs)
  File "C:\spark-2.3.1-bin-hadoop2.7\python\pyspark\rdd.py", line 690, in <lambda>
    samples = self.sample(False, fraction, 1).map(lambda kv: kv[0]).collect()
TypeError: 'int' object has no attribute '__getitem__'

        at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:298)
        at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:438)
        at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:421)
        at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:252)
        at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
        at scala.collection.Iterator$class.foreach(Iterator.scala:893)
        at org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28)
        at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
        at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
        at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
        at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310)
        at org.apache.spark.InterruptibleIterator.to(InterruptibleIterator.scala:28)
        at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
        at org.apache.spark.InterruptibleIterator.toBuffer(InterruptibleIterator.scala:28)
        at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289)
        at org.apache.spark.InterruptibleIterator.toArray(InterruptibleIterator.scala:28)
        at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$12.apply(RDD.scala:939)
        at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$12.apply(RDD.scala:939)
        at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2074)
        at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2074)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
        at org.apache.spark.scheduler.Task.run(Task.scala:109)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
        at java.lang.Thread.run(Thread.java:748)

2018-09-02 10:39:42 ERROR TaskSetManager:70 - Task 2 in stage 1.0 failed 1 times; aborting job
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "C:\spark-2.3.1-bin-hadoop2.7\python\pyspark\rdd.py", line 690, in sortByKey
    samples = self.sample(False, fraction, 1).map(lambda kv: kv[0]).collect()
  File "C:\spark-2.3.1-bin-hadoop2.7\python\pyspark\rdd.py", line 834, in collect
    sock_info = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd())
  File "C:\spark-2.3.1-bin-hadoop2.7\python\lib\py4j-0.10.7-src.zip\py4j\java_gateway.py", line 1257, in __call__
  File "C:\spark-2.3.1-bin-hadoop2.7\python\pyspark\sql\utils.py", line 63, in deco
    return f(*a, **kw)
  File "C:\spark-2.3.1-bin-hadoop2.7\python\lib\py4j-0.10.7-src.zip\py4j\protocol.py", line 328, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 2 in stage 1.0 failed 1 times, most recent failure: Lost task 2.0 in stage 1.0 (TID 6, localhost, executor driver): org.apache.spark.api.python.PythonException: Traceback (most recent call last):
  File "C:\spark-2.3.1-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\worker.py", line 230, in main
  File "C:\spark-2.3.1-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\worker.py", line 225, in process
  File "C:\spark-2.3.1-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\serializers.py", line 372, in dump_stream
    vs = list(itertools.islice(iterator, batch))
  File "C:\spark-2.3.1-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\util.py", line 55, in wrapper
    return f(*args, **kwargs)
  File "C:\spark-2.3.1-bin-hadoop2.7\python\pyspark\rdd.py", line 690, in <lambda>
    samples = self.sample(False, fraction, 1).map(lambda kv: kv[0]).collect()
TypeError: 'int' object has no attribute '__getitem__'

        at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:298)
        at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:438)
        at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:421)
        at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:252)
        at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
        at scala.collection.Iterator$class.foreach(Iterator.scala:893)
        at org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28)
        at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
        at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
        at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
        at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310)
        at org.apache.spark.InterruptibleIterator.to(InterruptibleIterator.scala:28)
        at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
        at org.apache.spark.InterruptibleIterator.toBuffer(InterruptibleIterator.scala:28)
        at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289)
        at org.apache.spark.InterruptibleIterator.toArray(InterruptibleIterator.scala:28)
        at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$12.apply(RDD.scala:939)
        at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$12.apply(RDD.scala:939)
        at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2074)
        at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2074)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
        at org.apache.spark.scheduler.Task.run(Task.scala:109)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
        at java.lang.Thread.run(Thread.java:748)

Driver stacktrace:
        at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1602)
        at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1590)
        at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1589)
        at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
        at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
        at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1589)
        at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:831)
        at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:831)
        at scala.Option.foreach(Option.scala:257)
        at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:831)
        at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1823)
        at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1772)
        at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1761)
        at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
        at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:642)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:2034)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:2055)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:2074)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:2099)
        at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:939)
        at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
        at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
        at org.apache.spark.rdd.RDD.withScope(RDD.scala:363)
        at org.apache.spark.rdd.RDD.collect(RDD.scala:938)
        at org.apache.spark.api.python.PythonRDD$.collectAndServe(PythonRDD.scala:162)
        at org.apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:498)
        at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
        at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
        at py4j.Gateway.invoke(Gateway.java:282)
        at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
        at py4j.commands.CallCommand.execute(CallCommand.java:79)
        at py4j.GatewayConnection.run(GatewayConnection.java:238)
        at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.api.python.PythonException: Traceback (most recent call last):
  File "C:\spark-2.3.1-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\worker.py", line 230, in main
  File "C:\spark-2.3.1-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\worker.py", line 225, in process
  File "C:\spark-2.3.1-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\serializers.py", line 372, in dump_stream
    vs = list(itertools.islice(iterator, batch))
  File "C:\spark-2.3.1-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\util.py", line 55, in wrapper
    return f(*args, **kwargs)
  File "C:\spark-2.3.1-bin-hadoop2.7\python\pyspark\rdd.py", line 690, in <lambda>
    samples = self.sample(False, fraction, 1).map(lambda kv: kv[0]).collect()
TypeError: 'int' object has no attribute '__getitem__'

        at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:298)
        at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:438)
        at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:421)
        at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:252)
        at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
        at scala.collection.Iterator$class.foreach(Iterator.scala:893)
        at org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28)
        at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
        at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
        at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
        at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310)
        at org.apache.spark.InterruptibleIterator.to(InterruptibleIterator.scala:28)
        at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
        at org.apache.spark.InterruptibleIterator.toBuffer(InterruptibleIterator.scala:28)
        at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289)
        at org.apache.spark.InterruptibleIterator.toArray(InterruptibleIterator.scala:28)
        at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$12.apply(RDD.scala:939)
        at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$12.apply(RDD.scala:939)
        at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2074)
        at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2074)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
        at org.apache.spark.scheduler.Task.run(Task.scala:109)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
        ... 1 more

>>> 2018-09-02 10:39:42 WARN  TaskSetManager:66 - Lost task 0.0 in stage 1.0 (TID 4, localhost, executor driver): TaskKilled (Stage cancelled)
2018-09-02 10:39:42 WARN  TaskSetManager:66 - Lost task 3.0 in stage 1.0 (TID 7, localhost, executor driver): TaskKilled (Stage cancelled)
2018-09-02 10:39:43 WARN  TaskSetManager:66 - Lost task 1.0 in stage 1.0 (TID 5, localhost, executor driver): TaskKilled (Stage cancelled)

如何使用 Apache Spark 并行排序整数列表?

我使用的是 Windows 10、Java SE Development Kit 8 和 Python 2.7.15

【问题讨论】:

【参考方案1】:

您要查找的方法是sortBy 而不是sortByKey

rdd.sortBy(lambda x: x)

【讨论】:

【参考方案2】:

你不能在这里真正使用 sortByKey,因为它是一种仅在 PairRDD 上实现的方法。唉,你的 RDD 不是 PairRDD,也就是说,不是键/值对的分布式集合。

您可以改为使用 sortBy(function),您必须提供排序标准。根据您的情况,您应该尝试:

rdd.sortBy(lambda x => x)

希望对你有帮助

【讨论】:

以上是关于如何在 Apache Spark 上对整数列表进行排序?的主要内容,如果未能解决你的问题,请参考以下文章

如何在 Databricks 上使用 Apache Spark / Python 将整数转换为日期

Apache Spark 如何将新列从列表/数组附加到 Spark 数据帧

如何在 Apache 上对 RewriteCond 使用“AND”、“OR”?

在 Apache Spark SQL 中对多行进行操作

如何在 Apache-Spark 2.x 中使用 java 进行增量序列

Apache Spark:数据框中行值列表的百分比