pyspark .show() 有效,但 .collect() 无效
Posted
技术标签:
【中文标题】pyspark .show() 有效,但 .collect() 无效【英文标题】:pyspark .show() works but .collect() does not 【发布时间】:2018-02-07 17:19:00 【问题描述】:我有一个非常简单的 pyspark 程序,它使用数据框从一组 ORC 文件中查询数据。我在 Windows 中使用 anaconda python 并在其上安装了 pyspark。
程序是这样的:
from pyspark.sql import SparkSession
spark_session = SparkSession.builder.appName("test").getOrCreate()
df_orc = spark_session .read.orc("./raw_data/")
df_orc.createOrReplaceTempView("orc")
这很好用:
spark.sql("select count(*) from orc").show()
但这会产生错误:
spark.sql("select count(*) from orc").collect()
错误信息是:
WARN Utils: Truncated the string representation of a plan since it was too large. This behavior can be adjusted by setting 'spark.debug.maxToStringFields' in SparkEnv.conf.
Py4JJavaError: An error occurred while calling o81.collectToPython.
: java.lang.IllegalArgumentException
at org.apache.xbean.asm5.ClassReader.<init>(Unknown Source)
at org.apache.xbean.asm5.ClassReader.<init>(Unknown Source)
at org.apache.xbean.asm5.ClassReader.<init>(Unknown Source)
at org.apache.spark.util.ClosureCleaner$.getClassReader(ClosureCleaner.scala:46)
at org.apache.spark.util.FieldAccessFinder$$anon$3$$anonfun$visitMethodInsn$2.apply(ClosureCleaner.sca
at org.apache.spark.util.FieldAccessFinder$$anon$3$$anonfun$visitMethodInsn$2.apply(ClosureCleaner.sca
at scala.collection.TraversableLike$WithFilter$$anonfun$foreach$1.apply(TraversableLike.scala:733)
at scala.collection.mutable.HashMap$$anon$1$$anonfun$foreach$2.apply(HashMap.scala:103)
at scala.collection.mutable.HashMap$$anon$1$$anonfun$foreach$2.apply(HashMap.scala:103)
at scala.collection.mutable.HashTable$class.foreachEntry(HashTable.scala:230)
at scala.collection.mutable.HashMap.foreachEntry(HashMap.scala:40)
at scala.collection.mutable.HashMap$$anon$1.foreach(HashMap.scala:103)
at scala.collection.TraversableLike$WithFilter.foreach(TraversableLike.scala:732)
at org.apache.spark.util.FieldAccessFinder$$anon$3.visitMethodInsn(ClosureCleaner.scala:426)
at org.apache.xbean.asm5.ClassReader.a(Unknown Source)
at org.apache.xbean.asm5.ClassReader.b(Unknown Source)
at org.apache.xbean.asm5.ClassReader.accept(Unknown Source)
at org.apache.xbean.asm5.ClassReader.accept(Unknown Source)
at org.apache.spark.util.ClosureCleaner$$anonfun$org$apache$spark$util$ClosureCleaner$$clean$14.apply(
at org.apache.spark.util.ClosureCleaner$$anonfun$org$apache$spark$util$ClosureCleaner$$clean$14.apply(
at scala.collection.immutable.List.foreach(List.scala:381)
at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.sc
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:156)
at org.apache.spark.SparkContext.clean(SparkContext.scala:2294)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2068)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2094)
at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:936)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
at org.apache.spark.rdd.RDD.collect(RDD.scala:935)
at org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:278)
at org.apache.spark.sql.Dataset$$anonfun$collectToPython$1.apply$mcI$sp(Dataset.scala:2808)
at org.apache.spark.sql.Dataset$$anonfun$collectToPython$1.apply(Dataset.scala:2805)
at org.apache.spark.sql.Dataset$$anonfun$collectToPython$1.apply(Dataset.scala:2805)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:65)
at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:2828)
at org.apache.spark.sql.Dataset.collectToPython(Dataset.scala:2805)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.base/java.lang.reflect.Method.invoke(Unknown Source)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:280)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:214)
at java.base/java.lang.Thread.run(Unknown Source)
【问题讨论】:
df_orc.count()
工作吗?
没有。类似的错误消息。
再观察:同样的代码在 ubuntu linux 中运行良好,anaconda python 也一样。
可能是你的java版本问题。 java 13 或 14 上的 collect() 似乎有问题。==
【参考方案1】:
为什么可以正常工作的原因:
spark.sql("select count(*) from orc").show()
是因为
.show()
仅适用于数据的前 5 行
但是当你运行时:
spark.sql("select count(*) from orc").collect()
.collect()
将适用于您的所有数据
来自您的错误消息:
WARN Utils: Truncated the string representation of a plan since it was too large. This behavior can be adjusted by setting 'spark.debug.maxToStringFields' in SparkEnv.conf.
根据spark documentation:
为宽模式创建和记录字符串的性能开销可能很大。为了限制影响,我们限制了默认包含的字段数量。这可以通过在 SparkEnv 中设置 'spark.debug.maxToStringFields' conf 来覆盖。
但是,它可能会影响你的工作表现,所以你需要这样的东西:
spark = SparkSession
.builder
.master('local[*]')
.appName('Notebook')
.config('spark.sql.debug.maxToStringFields', 200)
.getOrCreate()
这是一个新的 SQL 配置 spark.sql.debug.maxToStringFields
,它控制 truncatedString
剪切其输入序列的最大字段数。
默认值为:DEFAULT_MAX_TO_STRING_FIELDS = 25
您也可以将spark.sql.debug.maxToStringFields=100
添加到spark-defaults.conf
以前版本的 Spark 使用 spark.debug.maxToStringFields
而不是 spark.sql.debug.maxToStringFields
【讨论】:
以上是关于pyspark .show() 有效,但 .collect() 无效的主要内容,如果未能解决你的问题,请参考以下文章