如何在 python 中为子图运行智能循环
Posted
技术标签:
【中文标题】如何在 python 中为子图运行智能循环【英文标题】:How to run a smart loop for subplots in python 【发布时间】:2017-08-08 07:47:12 【问题描述】:所以我正在尝试创建一个由 9 个图表组成的 3x3 框,虽然我已经设法通过为每个单独的框手动编写代码来做到这一点,但我想学习如何使用循环来做到这一点。我似乎无法弄清楚。目前,我正在使用以下内容:
from matplotlib import gridspec
f, ((ax1, ax2, ax3), (ax4, ax5, ax6), (ax7, ax8, ax9)) = plt.subplots(3, 3, sharex='col', sharey='row')
gs = gridspec.GridSpec(3, 3)
fig = plt.figure(figsize=(20,20))
fig.text(0.5, .95, 'Constant Slope for [O/Fe]/[Fe/H] for Various R and Z', ha='center', va='center', size = 50)
fig.text(0.5, 0.08, '[Fe/H]', ha='center', va='center', size = 60)
fig.text(0.09, 0.5, '[O/Fe]', ha='center', va='center', rotation='vertical', size = 60)
ax1 = plt.subplot(gs[0])
histogram1 = ax1.hist2d(fehsc, ofesc, bins=nbins, range=[[-1,.5],[0.2,0.4]])
counts = histogram1[0]
xpos = histogram1[1]
ypos = histogram1[2]
image = histogram1[3]
newcounts = counts #we're going to iterate over this
for i in range (nbins):
xin = xpos[i]
yin = ypos
yline = m*xin + b
reset = np.where(yin < yline) #anything less than yline we want to be 0
#index = index[0:len(index)-1]
countout = counts[i]
countout[reset] = 0
newcounts[i] = countout
ax1.plot(xarr2, yarr2, color='w', linewidth='5', alpha = 0.3)
ax1.plot(xarr, yarr, color='r')
ax1.set_title('R in [5,7] kpc | Z in [1,2] kpc', size = 20)
ax2 = plt.subplot(gs[1])
histogram2 = ax2.hist2d(fehsc2, ofesc2, bins=nbins, range=[[-1,.5],[0.2,0.4]])
counts = histogram2[0]
xpos = histogram2[1]
ypos = histogram2[2]
image = histogram2[3]
newcounts = counts #we're going to iterate over this
for i in range (nbins):
xin = xpos[i]
yin = ypos
yline = m*xin + b
reset = np.where(yin < yline) #anything less than yline we want to be 0
#index = index[0:len(index)-1]
countout = counts[i]
countout[reset] = 0
newcounts[i] = countout
ax2.plot(xarr2, yarr2, color='w', linewidth='5', alpha = 0.3)
ax2.plot(xarr, yarr, color='r')
ax2.set_title('R in [7,9] kpc | Z in [1,2] kpc', size = 20)
以此类推,直到 ax9。
我尝试做的事情如下:
for k in range(1,10):
ax[k] = plt.subplot(gs[0])
histogram1 = ax[k].hist2d(fehsc, ofesc, bins=nbins, range=[[-1,.5],[0.2,0.4]])
counts = histogram1[0]
xpos = histogram1[1]
ypos = histogram1[2]
image = histogram1[3]
newcounts = counts #we're going to iterate over this
for i in range (nbins):
xin = xpos[i]
yin = ypos
yline = m*xin + b
reset = np.where(yin < yline) #anything less than yline we want to be 0
countout = counts[i]
countout[reset] = 0
newcounts[i] = countout
ax[k].plot(xarr2, yarr2, color='w', linewidth='5', alpha = 0.3)
ax[k].plot(xarr, yarr, color='r')
ax[k].set_title('R in [5,7] kpc | Z in [1,2] kpc', size = 20)
因为我想在一个循环中使用 ax(k) 并一次运行所有九次迭代。但显然这不是这样做的方法,或者只是行不通。是否可以在调用 ax_ 时将其从 1 循环到 9?
【问题讨论】:
【参考方案1】:迭代许多子图的一种简单方法是通过
创建它们fig, axes = plt.subplots(nrows=n, ncols=m)
axes
是n
行和m
列的数组。然后可以独立地遍历行和列,或者遍历轴数组的扁平版本。
本例中显示的是后者:
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(11)
y = np.random.rand(len(x), 9)*10
fig, axes = plt.subplots(3,3, sharex=True, sharey=True)
for i, ax in enumerate(axes.flatten()):
ax.bar(x, y[:,i], color=plt.cm.Paired(i/10.))
plt.show()
【讨论】:
【参考方案2】:import numpy as np
import matplotlib.pyplot as plt
# made some data for you.
# xx and yy is list of numpy arrays. in your case it will [fehsc1, fehsc3, ...fehsc9] and [ofesc1, ofesc2...ofesc9]
xx = [np.random.randn(100000) for i in range(9)]
yy = [np.random.randn(100000) + 5 for i in range(9)]
nbins = 40
m = 1
b = 0.5
f, ax = plt.subplots(3, 3, sharex='col', sharey='row')
# because ax = [[ax0,ax1,ax2],[ax3,ax4,ax5],[ax7,ax8,ax9]], ie list of lists we have unravel it
axr = ax.ravel()
# now axr = [ax0,ax1,ax2,ax3,ax4,ax5,ax7,ax8,ax9]
fig = plt.figure(figsize=(20,20))
for i in range(len(xx)):
histogram1 = axr[i].hist2d(xx[i], yy[i], bins=nbins)
counts = histogram1[0]
xpos = histogram1[1]
ypos = histogram1[2]
image = histogram1[3]
newcounts = counts #we're going to iterate over this
for k in range (nbins):
xin = xpos[k]
yin = ypos
yline = m*xin + b
reset = np.where(yin < yline) #anything less than yline we want to be 0
#index = index[0:len(index)-1]
countout = counts[k]
countout[reset] = 0
newcounts[k] = countout
#axr[i].plot(xarr2, yarr2, color='w', linewidth='5', alpha = 0.3)
plt.show()
【讨论】:
以上是关于如何在 python 中为子图运行智能循环的主要内容,如果未能解决你的问题,请参考以下文章