Pytorch 训练和评估不同的样本大小
Posted
技术标签:
【中文标题】Pytorch 训练和评估不同的样本大小【英文标题】:Pytorch Train & Eval Different Sample Sizes 【发布时间】:2019-12-20 18:57:07 【问题描述】:我正在学习 pytorch,并且有以下(缩写)代码来设置建模:
# define the model class for a neural net with 1 hidden layer
class myNN(nn.Module):
def __init__(self, D_in, H, D_out):
super(myNN, self).__init__()
self.lin1 = nn.Linear(D_in,H)
self.lin2 = nn.Linear(H,D_out)
def forward(self,X):
return torch.sigmoid(self.lin2(torch.sigmoid(self.lin1(x))))
# now make the datasets & dataloaders
batchSize = 5
# Create the data class
class Data(Dataset):
def __init__(self, x, y):
self.x = torch.FloatTensor(x)
self.y = torch.Tensor(y.astype(int))
self.len = self.x.shape[0]
self.p = self.x.shape[1]
def __getitem__(self, index):
return self.x[index], self.y[index]
def __len__(self):
return self.len
trainData = Data(trnX, trnY)
trainLoad = DataLoader(dataset = trainData, batch_size = batchSize)
testData = Data(tstX, tstY)
testLoad = DataLoader(dataset = testData, batch_size = len(testData))
# define the modeling objects
hiddenLayers = 30
learningRate = 0.1
model = myNN(p,hiddenLayers,1)
print(model)
optimizer = torch.optim.SGD(model.parameters(), lr = learningRate)
loss = nn.BCELoss()
与trnX.shape=(70, 2)
、trnY.shape=(70,)
、tstX.shape=(30,2)
和 tstY.shape=(30,)
。训练代码为:
# train!
epochs = 1000
talkFreq = 0.2
trnLoss = [np.inf]*epochs
tstLoss = [np.inf]*epochs
for i in range(epochs):
# train with minibatch gradient descent
for x, y in trainLoad:
# forward step
yhat = model(x)
# compute loss (not storing for now, will do after minibatching)
l = loss(yhat, y)
# backward step
optimizer.zero_grad()
l.backward()
optimizer.step()
# evaluate loss on training set
yhat = model(trainData.x)
trnLoss[i] = loss(yhat, trainData.y)
# evaluate loss on testing set
yhat = model(testData.x)
tstLoss[i] = loss(yhat, testData.y)
数据集 trainData
和 testData
分别有 70 和 30 个观测值。这可能只是一个新手问题,但是当我运行训练单元时,它会在 trnLoss[i] = loss(yhat, trainData.y)
行出现错误并显示错误
ValueError: Target and input must have the same number of elements. target nelement (70) != input nelement (5)
当我检查yhat=model(trainData.x)
行的输出时,我看到yhat
是一个带有batchSize
元素的张量,尽管事实上trainData.x.shape = torch.Size([70, 2])
。
如何使用小批量梯度下降迭代训练模型,然后使用该模型计算完整训练集和测试集的损失和准确率?我尝试在小批量迭代之前设置model.train()
,然后在评估代码之前设置model.eval()
,但无济于事。
【问题讨论】:
model = myNN(p,hiddenLayers,1)
中的p
是什么?还要保留model.eval()
之前的yhat = model(trainData.x)
和model.train()
之前的for x, y
我有p=2
。我目前在您建议的地方有model.train()
和model.eval()
电话。
(通过“当前”,我的意思是我已经添加了这些行,但仍然出现错误......)
【参考方案1】:
在myNN.forward()
中,您将小写x
作为输入传递给self.lin1
,而函数的输入参数命名为大写X
。小写 x
是一种在 for 循环中为 trainload
定义的全局变量,因此您没有收到任何语法错误,但您打算传递的值并未传递给 self.lin1
。
我是否还建议您考虑使用model.eval()
和with torch.no_grad()
作为您的测试代码。这里不是绝对必要的,但它会更有意义。
【讨论】:
谢谢,将X
更正为x
解决了问题。模型的forward()
评估将x
的最新值读取为“全局”变量这一事实解释了为什么yhat
的长度为batchSize
,尽管有输入。关于你的最后一点,我应该把我所有的评估代码(从model.eval()
到循环的结尾)放在with torch.no_grade()
中,对吧?最后一个问题,我应该写model.eval()
,还是model = model.eval()
,就像我在网上一些地方看到的那样。谢谢!
1:是的,在with torch.no_grad()
块中编写所有评估代码通常是一个好习惯,因为我们不希望在评估期间计算梯度。 2:拨打model.eval()
就够了。确保您还在“epoch for loop”开始时调用model.train()
,以便在循环trainLoad
之前将模型设置为训练模式。以上是关于Pytorch 训练和评估不同的样本大小的主要内容,如果未能解决你的问题,请参考以下文章
pytorch epoch, batch, iteration