Matplotlib 以奇数间隔日期 YearLocator
Posted
技术标签:
【中文标题】Matplotlib 以奇数间隔日期 YearLocator【英文标题】:Matplotlib dates YearLocator with odd intervals 【发布时间】:2018-07-03 20:48:46 【问题描述】:现在,当我的时间序列在十年之初(即 1990、2000、2010 等)开始时,我有一些可以按照我的规范格式化的工作代码,但我不知道如何调整我的当我的时间序列从非偶数年(即 1993 年)开始时,代码具有正确的格式。
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import dates
def format_xaxis(fig):
years = dates.YearLocator(10,month=1,day=1)
years1=dates.YearLocator(2,month=1,day=1)
dfmt = dates.DateFormatter('%Y')
dfmt1 = dates.DateFormatter('%y')
[i.xaxis.set_major_locator(years) for i in fig.axes]
[i.xaxis.set_minor_locator(years1) for i in fig.axes]
[i.xaxis.set_major_formatter(dfmt) for i in fig.axes]
[i.xaxis.set_minor_formatter(dfmt1) for i in fig.axes]
[i.get_xaxis().set_tick_params(which='major', pad=15) for i in fig.axes]
for t in fig.axes:
for tick in t.xaxis.get_major_ticks():
tick.label1.set_horizontalalignment('center')
for label in t.get_xmajorticklabels() :
label.set_rotation(0)
label.set_weight('bold')
for label in t.xaxis.get_minorticklabels():
label.set_fontsize('small')
for label in t.xaxis.get_minorticklabels()[::5]:
label.set_visible(False)
df = pd.DataFrame.from_dict('Y': 0: 0.15, 1: 0.18, 2: 0.23, 3: 0.15, 4: 0.15, 5: 0.15, 6: 0.17, 7: 0.175, 8: 0.212, 9: 0.184, 10: 0.18, 11: 0.18, 12: 0.21, 13: 0.139, 14: 0.15, 15: 0.128, 16: 0.126, 17: 0.1, 18: 0.11, 19: 0.183, 20: 0.14, 21: 0.12, 22: 0.155, 23: 0.245, 24: 0.248, 25: 0.262, 26: 0.17, 27: 0.143, 28: 0.13, 29: 0.102, 30: 0.258, 31: 0.293, 32: 0.196, 33: 0.21, 34: 0.14, 35: 0.17,
'Date': 0: '1990-06-10 00:00:00', 1: '1991-07-26 00:00:00', 2: '1992-10-15 00:00:00', 3: '1993-10-08 00:00:00', 4: '1994-04-07 00:00:00', 5: '1994-11-20 00:00:00', 6: '1995-04-24 00:00:00', 7: '1996-02-13 00:00:00', 8: '1996-04-15 00:00:00', 9: '1996-09-12 00:00:00', 10: '1997-02-13 00:00:00', 11: '1997-04-20 00:00:00', 12: '1997-08-23 00:00:00', 13: '1997-11-06 00:00:00', 14: '1998-04-15 00:00:00', 15: '1999-05-04 00:00:00', 16: '2000-03-17 00:00:00', 17: '2000-06-01 00:00:00', 18: '2001-10-05 00:00:00', 19: '2002-09-20 00:00:00', 20: '2003-04-25 00:00:00', 21: '2003-09-20 00:00:00', 22: '2005-05-07 00:00:00', 23: '2006-10-07 00:00:00', 24: '2007-10-13 00:00:00', 25: '2008-02-02 00:00:00', 26: '2008-03-28 00:00:00', 27: '2008-10-10 00:00:00', 28: '2009-10-10 00:00:00', 29: '2011-10-05 00:00:00', 30: '2012-10-03 00:00:00', 31: '2013-09-21 00:00:00', 32: '2014-09-23 00:00:00', 33: '2015-09-22 00:00:00', 34: '2016-10-01 00:00:00', 35: '2017-09-29 00:00:00')
df['Date'] = pd.to_datetime(df['Date'], format='%Y-%m-%d %H:%M:%S')
fig, ax = plt.subplots()
df.plot('Date','Y',ax=ax,marker='x',ls='-')
ax.set_xlim(pd.datetime(1990, 1, 1), pd.datetime(2018, 1, 1))
format_xaxis(fig)
这会产生如下图:
如何使用从 1993 年开始的时间序列重新创建上述情节?我仍然希望每两年设置一次次要刻度标签(即 95,97,99,01,....)。当时间序列图从奇数年开始时,是否可以使用matplotlib.dates.YearLocator 格式化日期?
【问题讨论】:
有点偏题,但看起来您可以通过像plt.setp(plt.gca().get_xticklabels(), rotation=45, fontsize=10)
这样的调用来简化代码。
【参考方案1】:
您可以继承 YearLocator
以拥有您的自定义 OffsetYearLocator
。
matplotlib
的版本from matplotlib import dates
class OffsetYearLocator(dates.YearLocator):
def __init__(self, *args, **kwargs):
self.offset = kwargs.pop("offset", 0)
dates.YearLocator.__init__(self,*args, **kwargs)
def tick_values(self, vmin, vmax):
ymin = self.base.le(vmin.year)-self.offset
ymax = self.base.ge(vmax.year)+(self.base._base-self.offset)
ticks = [vmin.replace(year=ymin, **self.replaced)]
while True:
dt = ticks[-1]
if dt.year >= ymax:
return dates.date2num(ticks)
year = dt.year + self.base.get_base()
ticks.append(dt.replace(year=year, **self.replaced))
matplotlib >= 3.1
的版本from matplotlib import dates
class OffsetYearLocator(dates.YearLocator):
def __init__(self, *args, **kwargs):
self.offset = kwargs.pop("offset", 0)
dates.YearLocator.__init__(self,*args, **kwargs)
def tick_values(self, vmin, vmax):
ymin = self.base.le(vmin.year) * self.base.step - self.offset
ymax = self.base.ge(vmax.year) * self.base.step + (self.base.step-self.offset)
ticks = [vmin.replace(year=ymin, **self.replaced)]
while True:
dt = ticks[-1]
if dt.year >= ymax:
return dates.date2num(ticks)
year = dt.year + self.base.step
ticks.append(dt.replace(year=year, **self.replaced))
这可以处理一个额外的参数offset
,它是从年份中减去的。
在这种情况下,可以将base
保留为2
(每两年一次),但使用1
的偏移量。
years1 = OffsetYearLocator(2, month=1, day=1, offset=1)
完整示例(使用 matplotlib >= 3.1 的版本):
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import dates
class OffsetYearLocator(dates.YearLocator):
def __init__(self, *args, **kwargs):
self.offset = kwargs.pop("offset", 0)
dates.YearLocator.__init__(self,*args, **kwargs)
def tick_values(self, vmin, vmax):
ymin = self.base.le(vmin.year) * self.base.step - self.offset
ymax = self.base.ge(vmax.year) * self.base.step + (self.base.step-self.offset)
ticks = [vmin.replace(year=ymin, **self.replaced)]
while True:
dt = ticks[-1]
if dt.year >= ymax:
return dates.date2num(ticks)
year = dt.year + self.base.step
ticks.append(dt.replace(year=year, **self.replaced))
def format_xaxis(ax):
years = dates.YearLocator(10,month=1,day=1)
years1=OffsetYearLocator(2,month=1,day=1, offset=1)
dfmt = dates.DateFormatter('%Y')
dfmt1 = dates.DateFormatter('%y')
ax.xaxis.set_major_locator(years)
ax.xaxis.set_minor_locator(years1)
ax.xaxis.set_major_formatter(dfmt)
ax.xaxis.set_minor_formatter(dfmt1)
ax.get_xaxis().set_tick_params(which='major', pad=15)
plt.setp(ax.get_xmajorticklabels(), rotation=0, weight="bold", ha="center")
df = pd.DataFrame.from_dict('YData': 0: 0.15, 1: 0.18, 2: 0.23, 3: 0.15, 4: 0.15, 5: 0.15, 6: 0.17, 7: 0.175, 8: 0.212, 9: 0.184, 10: 0.18, 11: 0.18, 12: 0.21, 13: 0.139, 14: 0.15, 15: 0.128, 16: 0.126, 17: 0.1, 18: 0.11, 19: 0.183, 20: 0.14, 21: 0.12, 22: 0.155, 23: 0.245, 24: 0.248, 25: 0.262, 26: 0.17, 27: 0.143, 28: 0.13, 29: 0.102, 30: 0.258, 31: 0.293, 32: 0.196, 33: 0.21, 34: 0.14, 35: 0.17,
'Date': 0: '1990-06-10 00:00:00', 1: '1991-07-26 00:00:00', 2: '1992-10-15 00:00:00', 3: '1993-10-08 00:00:00', 4: '1994-04-07 00:00:00', 5: '1994-11-20 00:00:00', 6: '1995-04-24 00:00:00', 7: '1996-02-13 00:00:00', 8: '1996-04-15 00:00:00', 9: '1996-09-12 00:00:00', 10: '1997-02-13 00:00:00', 11: '1997-04-20 00:00:00', 12: '1997-08-23 00:00:00', 13: '1997-11-06 00:00:00', 14: '1998-04-15 00:00:00', 15: '1999-05-04 00:00:00', 16: '2000-03-17 00:00:00', 17: '2000-06-01 00:00:00', 18: '2001-10-05 00:00:00', 19: '2002-09-20 00:00:00', 20: '2003-04-25 00:00:00', 21: '2003-09-20 00:00:00', 22: '2005-05-07 00:00:00', 23: '2006-10-07 00:00:00', 24: '2007-10-13 00:00:00', 25: '2008-02-02 00:00:00', 26: '2008-03-28 00:00:00', 27: '2008-10-10 00:00:00', 28: '2009-10-10 00:00:00', 29: '2011-10-05 00:00:00', 30: '2012-10-03 00:00:00', 31: '2013-09-21 00:00:00', 32: '2014-09-23 00:00:00', 33: '2015-09-22 00:00:00', 34: '2016-10-01 00:00:00', 35: '2017-09-29 00:00:00')
df['Date'] = pd.to_datetime(df['Date'], format='%Y-%m-%d %H:%M:%S')
fig, ax = plt.subplots()
ax.plot('Date','YData', data=df, marker='x',ls='-')
ax.set_xlim(pd.datetime(1990,1,1), pd.datetime(2018,1,1))
format_xaxis(ax)
plt.show()
【讨论】:
哇!。我有 99% 的把握我不会得到任何答案。我最终能够调整您的解决方案以获得我想要的格式!具体来说,我必须使用years = OffsetYearLocator(10,month=1,day=1, offset=7)
和years1=OffsetYearLocator(2,month=1,day=1, offset=1)
。非常感谢!!
@ImportanceOfBeingErnest 代码pd.datetime(1990,01,01)
中的这部分如何为您不产生 SyntaxError?
@ImportanceOfBeingErnest 在 python 控制台和 Jupiter 中:pd.datetime(1990,01,01) ^ SyntaxError: invalid token
。字符^
指向01
。 PS。你使用 Python 2 还是 3?
@dubbbdan 是的,您已更新到 matplotlib 3.1。由于原始代码使用了私有属性,如有更改,恕不另行通知,因此突然中断。我用新版本更新了答案。
@dubbbdan 是的,你是对的,这里使用 pandas 绘图令人困惑。我也改了。【参考方案2】:
为了禁用一些次要刻度,您可以更改次要刻度的间隔:
years1=dates.YearLocator(1)
并将它们的每一秒的可见性设置为 False:
for tick in t.xaxis.get_minor_ticks()[1::2]:
tick.set_visible(False)
在您的代码中删除次要标签可见性选项后:
for label in t.xaxis.get_minorticklabels()[::5]:
label.set_visible(False)
将xlim
更改为 1993 年之后,您会看到下一张图片:
更复杂和灵活的解决方案是创建一个新的 Formatter 类:
# Format year minor ticks
class MinorYearFormatter(dates.DateFormatter):
def __init__(self, fmt):
dates.DateFormatter.__init__(self, fmt)
def __call__(self, x, pos):
# Disable tick labels for some years
if pd.Timestamp.fromordinal(int(x)).year % 2 == 0:
return ''
else:
return dates.DateFormatter.__call__(self, x, pos)
并将dfmt1
重新分配给新的格式化程序:
dfmt1 = MinorYearFormatter('%y')
【讨论】:
此解决方案更改格式,而不是刻度的位置。如果您不介意标记的刻度之间的额外刻度,它仍然很有用。我想你可以省略MinorYearFormatter
的__init__
函数,因为它实际上并没有做任何事情。
是的,__init__
是对的,谢谢。它只是自动......在创建子类时编写init......顺便说一句,“每两年设置一次小刻度标签” - 我猜它没有限制隐式格式修改。我认为这只是关于知名度。以上是关于Matplotlib 以奇数间隔日期 YearLocator的主要内容,如果未能解决你的问题,请参考以下文章
条形图 Matplotlib:日期间隔(xaxis)问题与 twinx
我怎样才能让 xticks 在我的 matplotlib 图上有一个每月间隔而不是每天