Python 2.6:在使用 multiprocessing.Pool 时处理本地存储

Posted

技术标签:

【中文标题】Python 2.6:在使用 multiprocessing.Pool 时处理本地存储【英文标题】:Python 2.6: Process local storage while using multiprocessing.Pool 【发布时间】:2011-03-18 17:42:25 【问题描述】:

我正在尝试构建一个 python 脚本,该脚本具有跨大量数据的工作进程池(使用 mutiprocessing.Pool)。

我希望每个进程都有一个唯一的对象,该对象可以在该进程的多次执行中使用。

伪代码:

def work(data):
    #connection should be unique per process
    connection.put(data)
    print 'work done with connection:', connection

if __name__ == '__main__':
    pPool = Pool() # pool of 4 processes
    datas = [1..1000]
    for process in pPool:
        #this is the part i'm asking about // how do I really do this?
        process.connection = Connection(conargs)
    for data in datas:
       pPool.apply_async(work, (data))

【问题讨论】:

【参考方案1】:

我认为这样的东西应该可以工作(未经测试)

def init(*args):
    global connection
    connection = Connection(*args)
pPool = Pool(initializer=init, initargs=conargs) 

【讨论】:

你能把它标记为答案吗?【参考方案2】:

直接创建mp.Processes 可能是最简单的(没有mp.Pool):

import multiprocessing as mp
import time

class Connection(object):
    def __init__(self,name):
        self.name=name
    def __str__(self):
        return self.name

def work(inqueue,conn):
    name=mp.current_process().name
    while 1:
        data=inqueue.get()
        time.sleep(.5)
        print('n: work done with connection c on data d'.format(
            n=name,c=conn,d=data))
        inqueue.task_done()

if __name__ == '__main__':
    N=4
    procs=[]
    inqueue=mp.JoinableQueue()
    for i in range(N):
        conn=Connection(name='Conn-'+str(i))
        proc=mp.Process(target=work,name='Proc-'+str(i),args=(inqueue,conn))
        proc.daemon=True
        proc.start()

    datas = range(1,11)
    for data in datas:
        inqueue.put(data)
    inqueue.join()

产量

Proc-0: work done with connection Conn-0 on data 1
Proc-1: work done with connection Conn-1 on data 2
Proc-3: work done with connection Conn-3 on data 3
Proc-2: work done with connection Conn-2 on data 4
Proc-0: work done with connection Conn-0 on data 5
Proc-1: work done with connection Conn-1 on data 6
Proc-3: work done with connection Conn-3 on data 7
Proc-2: work done with connection Conn-2 on data 8
Proc-0: work done with connection Conn-0 on data 9
Proc-1: work done with connection Conn-1 on data 10

注意Proc 号码每次都对应同一个Conn 号码。

【讨论】:

【参考方案3】:

进程本地存储很容易实现为映射容器,对于从 Google 到这里寻找类似东西的其他人来说(注意这是 Py3,但很容易转换为 2 的语法(只是继承自 object):

class ProcessLocal:
    """
    Provides a basic per-process mapping container that wipes itself if the current PID changed since the last get/set.
    Aka `threading.local()`, but for processes instead of threads.
    """

    __pid__ = -1

    def __init__(self, mapping_factory=dict):
        self.__mapping_factory = mapping_factory

    def __handle_pid(self):
        new_pid = os.getpid()
        if self.__pid__ != new_pid:
            self.__pid__, self.__store = new_pid, self.__mapping_factory()

    def __delitem__(self, key):
        self.__handle_pid()
        return self.__store.__delitem__(key)

    def __getitem__(self, key):
        self.__handle_pid()
        return self.__store.__getitem__(key)

    def __setitem__(self, key, val):
        self.__handle_pid()
        return self.__store.__setitem__(key)

查看更多@https://github.com/akatrevorjay/pytutils/blob/develop/pytutils/mappings.py

【讨论】:

【参考方案4】:

你想让一个对象驻留在共享内存中,对吧?

Python 在其标准库中对此提供了一些支持,但它有点差。据我所知,只能存储整数和其他一些原始类型。

尝试 POSH(Python 对象共享):http://poshmodule.sourceforge.net/

【讨论】:

以上是关于Python 2.6:在使用 multiprocessing.Pool 时处理本地存储的主要内容,如果未能解决你的问题,请参考以下文章

Python升级版本2.6到2.7

Blender 2.6:通过 Python 按名称选择对象

使用 Python 2.6 设置全局热键

Python 2.6:在使用 multiprocessing.Pool 时处理本地存储

准确确定在 Python 多处理期间腌制的内容

python并发之multiprocessing