无法加载动态库“libcublasLt.so.11”; dlerror:libcublasLt.so.11:无法打开共享对象文件:没有这样的文件或目录
Posted
技术标签:
【中文标题】无法加载动态库“libcublasLt.so.11”; dlerror:libcublasLt.so.11:无法打开共享对象文件:没有这样的文件或目录【英文标题】:Could not load dynamic library 'libcublasLt.so.11'; dlerror: libcublasLt.so.11: cannot open shared object file: No such file or directory 【发布时间】:2022-01-12 23:58:42 【问题描述】:我刚刚更新了我的显卡驱动器
sudo apt install nvidia-driver-470
sudo apt install cuda-drivers-470
我决定以这种方式安装它们,因为它们在尝试sudo apt upgrade
时被阻止。然后我错误地做了sudo apt autoremove
来清理旧包。重新启动计算机以正确设置新驱动程序后,我无法再将 GPU 加速与 tensorflow 一起使用。
import tensorflow as tf
tf.test.is_gpu_available()
WARNING:tensorflow:From <stdin>:1: is_gpu_available (from tensorflow.python.framework.test_util) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.config.list_physical_devices('GPU')` instead.
2021-12-07 16:52:01.771391: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2021-12-07 16:52:01.807283: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:939] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-12-07 16:52:01.807973: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
2021-12-07 16:52:01.808017: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcublas.so.11'; dlerror: libcublas.so.11: cannot open shared object file: No such file or directory
2021-12-07 16:52:01.808048: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcublasLt.so.11'; dlerror: libcublasLt.so.11: cannot open shared object file: No such file or directory
2021-12-07 16:52:01.856391: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcusolver.so.11'; dlerror: libcusolver.so.11: cannot open shared object file: No such file or directory
2021-12-07 16:52:01.856466: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcusparse.so.11'; dlerror: libcusparse.so.11: cannot open shared object file: No such file or directory
2021-12-07 16:52:01.857601: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1850] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.
Skipping registering GPU devices...
False
【问题讨论】:
【参考方案1】:您可以在/usr/lib/x86_64-linux-gnu
目录中创建符号链接。我是通过以下方式找到的:
$ whereis libcudart
libcudart: /usr/lib/x86_64-linux-gnu/libcudart.so /usr/share/man/man7/libcudart.7.gz
在此文件夹中,您可以找到这些 cuda 库的其他版本。然后像这样创建符号链接。您链接到的特定版本可能略有不同。
$ sudo ln -s libcublas.so.10.2.1.243 libcublas.so.11
$ sudo ln -s libcublasLt.so.10.2.1.243 libcublasLt.so.11
$ sudo ln -s libcusolver.so.10.2.0.243 libcusolver.so.11
$ sudo ln -s libcusparse.so.10.3.0.243 libcusparse.so.11
现在应该检测到您的 GPU。
import tensorflow as tf
>>> tf.test.is_gpu_available()
WARNING:tensorflow:From <stdin>:1: is_gpu_available (from tensorflow.python.framework.test_util) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.config.list_physical_devices('GPU')` instead.
2021-12-07 17:07:26.914296: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2021-12-07 17:07:26.950731: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:939] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-12-07 17:07:27.029687: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:939] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-12-07 17:07:27.030421: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:939] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-12-07 17:07:27.325218: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:939] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-12-07 17:07:27.325642: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:939] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-12-07 17:07:27.326022: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:939] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-12-07 17:07:27.326408: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /device:GPU:0 with 9280 MB memory: -> device: 0, name: NVIDIA GeForce RTX 3060, pci bus id: 0000:06:00.0, compute capability: 8.6
True
这种方法之所以有效,是因为这些 cuda 库非常相似,甚至 NVIDIA 也经常使用符号链接构建它们。如果 tensorflow 正在寻找 libcublas.so.11
,您可以使用该名称创建一个文件,该文件仅指向已安装的另一个版本的 libcublas。
【讨论】:
以上是关于无法加载动态库“libcublasLt.so.11”; dlerror:libcublasLt.so.11:无法打开共享对象文件:没有这样的文件或目录的主要内容,如果未能解决你的问题,请参考以下文章
`PHP 警告:PHP 启动:无法加载动态库 'mcrypt.so'