通过 Python 进行人脸检测程序中的 CV2 错误

Posted

技术标签:

【中文标题】通过 Python 进行人脸检测程序中的 CV2 错误【英文标题】:CV2 error in face detection program via Python 【发布时间】:2021-12-30 03:19:46 【问题描述】:

所以,我正在制作一个人脸检测程序,一切正常,但是一旦我运行它,它就会向我显示错误消息:

line 40, in <module>
    faceNet=cv2.dnn.readNet(faceModel, faceProto)
cv2.error: OpenCV(4.5.4-dev) D:\a\opencv-python\opencv-python\opencv\modules\dnn\src\caffe\caffe_io.cpp:1138: error: (-2:Unspecified error) FAILED: fs.is_open(). Can't open "opencv_face_detector_uint8.pb" in function 'cv::dnn::ReadProtoFromBinaryFile'

代码是:

import cv2
import math
import argparse

def highlightFace(net, frame, conf_thershold=0.7):
    frameOpencvDnn=frame.copy()
    frameHight=frameOpencvDnn.shape[0]
    frameWidth=frameOpencvDnn.shape[1]
    blob=cv2.dnnblobFromImage(frameOpencvDnn, 1.0, (300, 300), [104, 117, 123], True, False)

    net.setInput(blob)
    detections=net.forword()
    faceBoxes=[]
    for i in range(detections.shape[2]):
        confidence=detections[0,0,1,2]
        if confidence>conf_thershold:
            x1=int(detections[0,0,i,3]*frameWidth)
            y1=int(detections[0,0,i,4]*frameHight)
            x2=int(detections[0,0,i,5]*frameWidth)
            y2=int(detections[0,0,i,6]*frameHight)
            faceBoxes.append([x1,y1,x2,y2])
            cv2.rectangel(frameOpencvDnn, (x1,y1), (x2,y2), (0,225,0), int(round(frameHight/150)), 8)
    return frameOpencvDnn,faceBoxes
parser=argparse.ArgumentParser()
parser.add_argument('--image')

args=parser.parse_args()

faceProto="opencv_face_detector.pbtxt"
faceModel="opencv_face_detector_uint8.pb"
ageProto="age_deploy.prototxt"
ageModel="age_net.caffemodel"
genderProto="gender_deploy.prototxt"
genderModel="gender_net.caffmodel"

MODEL_MEAN_VALUES=(78.4263377603, 87.7689143744, 144.895847746)
ageList=['(0-2)', '(4-6)', '(8-12)','(15-20)', '(25-32)', '(38-43)', '(48-53)', '(60-100)']
genderList=['Male','Female']

faceNet=cv2.dnn.readNet(faceModel, faceProto)
ageNet=cv2.dnn.readNet(ageModel, ageProto)
genderNet=cv2.dnn.readNet(genderModel, genderProto)

video=cv2.VideoCapture(args.image if args.image else 0)
padding=20
while cv2.waitKey(1)<0 :
    hasFrame,frame=video.read()
    if not hasFrame:
        cv2.waitKey()
        break
    
    resultImg,faceBoxes=highlightFace(faceNet,frame)
    if not faceBoxes:
        print("No Face is being Detected")

for faceBox in faceBoxes:
    face=frame[max(0,faceBox[1]-padding):
               min(faceBox[3]+padding,frame.shape[0]-1),max(0,faceBox[0]-padding)
               :min(faceBox[2]+padding, frame.shape[1]-1)]

blob=cv2.dnn.blobFromImage(face, 1.0, (227.227), MODEL_MEAN_VALUES, swapRB=False)
genderNet.setInput(blob)
genderPreds=genderNet.forword()
gender=genderList[genderPreds[0].argmax()]
print(f'Gender: gender')

ageNet.setInput(blob)
agePreds=ageNet.forword()
age=ageList[agePreds[0].argmax()]
print(f'Age: age[1:-1] years')

cv2.putText(resultImg, f'gender, age', (faceBox[0], faceBox[1]-10),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0,225,225), 2, cv2.LINE_AA)
cv2.imshow("Detecting age and gender", resultImg)

【问题讨论】:

为什么要标记 Java 和 CSS?请不要使用与您的问题无关的标签。 【参考方案1】:

代码有点狡猾,它不显示视频。试试这个。

import cv2
import math
import argparse

""" Identification """

faceProto = "opencv_face_detector.pbtxt"
faceModel = "opencv_face_detector_uint8.pb"

ageProto = "age_deploy.prototxt"
ageModel = "age_net.caffemodel"

genderProto = "gender_deploy.prototxt"
genderModel = "gender_net.caffemodel"

faceNet=cv2.dnn.readNet(faceModel, faceProto)
ageNet=cv2.dnn.readNet(ageModel,ageProto)
genderNet=cv2.dnn.readNet(genderModel,genderProto)

MODEL_MEAN_VALUES = (78.4263377603, 87.7689143744, 114.895847746)
ageList = ['(0-2)', '(4-6)', '(8-12)', '(15-20)', '(25-32)', '(38-43)', '(48-53)', '(60-100)']
genderList = ['Male', 'Female']
padding=20

""" Face highliting """

def faceBox(faceNet, frames):
    frameHeight=frames.shape[0]
    frameWidth=frames.shape[1]
    blob=cv2.dnn.blobFromImage(frames, 1.0, (300,300), [104,117,123], swapRB=False)
    faceNet.setInput(blob)
    detection=faceNet.forward()
    bboxs=[]
    for i in range(detection.shape[2]):
        confidence=detection[0,0,i,2]
        if confidence>0.7:
            x1=int(detection[0,0,i,3]*frameWidth)
            y1=int(detection[0,0,i,4]*frameHeight)
            x2=int(detection[0,0,i,5]*frameWidth)
            y2=int(detection[0,0,i,6]*frameHeight)
            bboxs.append([x1,y1,x2,y2])
            cv2.rectangle(frames, (x1,y1),(x2,y2),(0,255,0), 1)
    return frames, bboxs

""" Video display """

def DisplayVid():
    cap = cv2.VideoCapture(0, cv2.CAP_DSHOW)
    fourcc = cv2.VideoWriter_fourcc(*'XVID')
    out = cv2.VideoWriter('testvideo', fourcc, 20.0, (640, 480))

    cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1920)
    cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 1080)

    while (True):
        ret, frame = cap.read()
        frameFace, bboxes = faceBox(faceNet, frame)
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        out.write(frame)

        for bbox in bboxes:
            face = frame[bbox[1]:bbox[3], bbox[0]:bbox[2]]

            blob = cv2.dnn.blobFromImage(face, 1.0, (227, 227), MODEL_MEAN_VALUES, swapRB=False)
            genderNet.setInput(blob)
            genderPreds = genderNet.forward()
            gender = genderList[genderPreds[0].argmax()]

            ageNet.setInput(blob)
            agePreds = ageNet.forward()
            age = ageList[agePreds[0].argmax()]

            label = ",".format(gender, age)
            cv2.rectangle(frameFace, (bbox[0], bbox[1] - 30), (bbox[2], bbox[1]), (0, 255, 0), -1)
            cv2.putText(frameFace, label, (bbox[0], bbox[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), 2,
                        cv2.LINE_AA)
        cv2.imshow("Age-Gender", frameFace)
        k = cv2.waitKey(1)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

        if not (cap.isOpened()):
            print("Could not open video device")

    cap.release()
    out.release()
    cv2.destroyAllWindows()

DisplayVid()

【讨论】:

以上是关于通过 Python 进行人脸检测程序中的 CV2 错误的主要内容,如果未能解决你的问题,请参考以下文章

关于Python中 人脸检测中的问题

使用 dlib 进行人脸地标检测

[python][deepface][原创]使用deepface进行人脸检测

python3 dlib人脸检测

Opencv:图片中检测人脸并保存

Opencv:视频中人脸检测并保存人脸图片