为啥 Mallet 文本分类为所有测试文件输出相同的值 1.0?
Posted
技术标签:
【中文标题】为啥 Mallet 文本分类为所有测试文件输出相同的值 1.0?【英文标题】:Why Mallet text classification output the same value 1.0 for all test files?为什么 Mallet 文本分类为所有测试文件输出相同的值 1.0? 【发布时间】:2018-09-13 22:52:12 【问题描述】:我正在学习 Mallet 文本分类命令行。估计不同类别的输出值都是相同的 1.0。我不知道我错在哪里。你能帮忙吗?
木槌版本:E:\Mallet\mallet-2.0.8RC3
//there is a txt file about cat breed (catmaterial.txt) in cat dir.
//command 1
C:\Users\toshiba>mallet import-dir --input E:\Mallet\testmaterial\cat --output E
:\Mallet\testmaterial\cat.mallet --remove-stopwords
//command 1 output
Labels =
E:\Mallet\testmaterial\cat
//command 2, save classifier as catClass.classifier
C:\Users\toshiba>mallet train-classifier --input E:\Mallet\testmaterial\cat.mall
et --trainer NaiveBayes --output-classifier E:\Mallet\testmaterial\catClass.clas
sifier
//command 2 output
Training portion = 1.0
Unlabeled training sub-portion = 0.0
Validation portion = 0.0
Testing portion = 0.0
-------------------- Trial 0 --------------------
Trial 0 Training NaiveBayesTrainer with 1 instances
Trial 0 Training NaiveBayesTrainer finished
No examples with predicted label !
No examples with true label !
No examples with predicted label !
No examples with true label !
Trial 0 Trainer NaiveBayesTrainer training data accuracy = 1.0
Trial 0 Trainer NaiveBayesTrainer Test Data Confusion Matrix
No examples with predicted label !
Trial 0 Trainer NaiveBayesTrainer test data precision() = 1.0
No examples with true label !
Trial 0 Trainer NaiveBayesTrainer test data recall() = 1.0
No examples with predicted label !
No examples with true label !
Trial 0 Trainer NaiveBayesTrainer test data F1() = 1.0
Trial 0 Trainer NaiveBayesTrainer test data accuracy = NaN
NaiveBayesTrainer
Summary. train accuracy mean = 1.0 stddev = 0.0 stderr = 0.0
Summary. test accuracy mean = NaN stddev = NaN stderr = NaN
Summary. test precision() mean = 1.0 stddev = 0.0 stderr = 0.0
Summary. test recall() mean = 1.0 stddev = 0.0 stderr = 0.0
Summary. test f1() mean = 1.0 stddev = 0.0 stderr = 0.0
//command 3, estimate classes of the three files about cat, deer and dog. The cat file is the same as the one for cat.mallet
C:\Users\toshiba>mallet classify-dir --input E:\Mallet\testmaterial\test_cat_dir
--output - --classifier E:\Mallet\testmaterial\catClass.classifier
//command 3 output
file:/E:/Mallet/testmaterial/test_cat_dir/catmaterial.txt 1.0
file:/E:/Mallet/testmaterial/test_cat_dir/deertext.txt 1.0
file:/E:/Mallet/testmaterial/test_cat_dir/dogmaterial.txt 1.0
// why the three classes are all 1.0 ?
C:\Users\toshiba>
你能帮忙吗? 谢谢。
++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++
更新:
感谢您的回答,但仍然为所有文件输出 1.0。
我的想法是,我将一些狗文件放在狗目录中,并将这些狗文件作为实例,训练模型,然后在 test_dir 中测试一些文件以查看结果。
我根据对您建议的理解尝试了,但仍然输出相同的 1.0。
你能帮我处理下面的命令行吗?
在E:\Mallet\train_dir\dog中,有4个dog txt文件(dog 2.txt, dog4.txt,dog5.txt, dogmaterial.txt)。
在E:\Mallet\test_dir中,有9个txt文件(cat2.txt、catmaterial.txt、deermaterial.txt、dog3.txt、dog6.txt、dog 2.txt、dog4.txt、dog5.txt、 dogmaterial.txt)。
C:\Users\toshiba>mallet import-dir --input E:\Mallet\train_dir\dog --output E:\M
allet\classifier_dir\3animal.mallet --remove-stopwords
Labels =
E:\Mallet\train_dir\dog
C:\Users\toshiba>mallet train-classifier --input E:\Mallet\classifier_dir\3anima
l.mallet --trainer NaiveBayes --output-classifier E:\Mallet\classifier_dir\3anim
alClass.classifier
Training portion = 1.0
Unlabeled training sub-portion = 0.0
Validation portion = 0.0
Testing portion = 0.0
-------------------- Trial 0 --------------------
Trial 0 Training NaiveBayesTrainer with 4 instances
Trial 0 Training NaiveBayesTrainer finished
No examples with predicted label !
No examples with true label !
No examples with predicted label !
No examples with true label !
Trial 0 Trainer NaiveBayesTrainer training data accuracy = 1.0
Trial 0 Trainer NaiveBayesTrainer Test Data Confusion Matrix
No examples with predicted label !
Trial 0 Trainer NaiveBayesTrainer test data precision() = 1.0
No examples with true label !
Trial 0 Trainer NaiveBayesTrainer test data recall() = 1.0
No examples with predicted label !
No examples with true label !
Trial 0 Trainer NaiveBayesTrainer test data F1() = 1.0
Trial 0 Trainer NaiveBayesTrainer test data accuracy = NaN
NaiveBayesTrainer
Summary. train accuracy mean = 1.0 stddev = 0.0 stderr = 0.0
Summary. test accuracy mean = NaN stddev = NaN stderr = NaN
Summary. test precision() mean = 1.0 stddev = 0.0 stderr = 0.0
Summary. test recall() mean = 1.0 stddev = 0.0 stderr = 0.0
Summary. test f1() mean = 1.0 stddev = 0.0 stderr = 0.0
C:\Users\toshiba>mallet classify-dir --input E:\Mallet\test_dir --output - --cla
ssifier E:\Mallet\classifier_dir\3animalClass.classifier
file:/E:/Mallet/test_dir/cat2.txt 1.0
file:/E:/Mallet/test_dir/catmaterial.txt 1.0
file:/E:/Mallet/test_dir/deertext.txt 1.0
file:/E:/Mallet/test_dir/dog%202.txt 1.0
file:/E:/Mallet/test_dir/dog3.txt 1.0
file:/E:/Mallet/test_dir/dog4.txt 1.0
file:/E:/Mallet/test_dir/dog5.txt 1.0
file:/E:/Mallet/test_dir/dog6.txt 1.0
file:/E:/Mallet/test_dir/dogmaterial.txt 1.0
C:\Users\toshiba>
谢谢。
【问题讨论】:
【参考方案1】:有两个输入选项。 input-dir
将目录视为类,将每个目录中的每个文件视为输入实例。 input-file
逐行读取输入文件,并将行内的各个字段视为标签和实例数据。您正在使用 files-in-directories 输入类型,因此您正在创建一个具有一个类和一个实例的分类器。我猜你想要文件中的行类型。
【讨论】:
以上是关于为啥 Mallet 文本分类为所有测试文件输出相同的值 1.0?的主要内容,如果未能解决你的问题,请参考以下文章